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Abstract
Pollution attacks are one of the major concerns facing P2P networks. They have a tremendous impact on push-based fully
connected overlays, in which each peer receives an exclusive chunk from the source and is also the only one responsible for
relaying it to the rest of the peers. In this study, we propose a novel technique to identify and expel malicious peers which
involves using trusted peers, software-defined networking (SDN) and proactive moving target defense. Experiments to obtain
the accuracy and effectiveness of the implemented methods, as well as an analysis of the performance concerns, were carried
out through simulation using a Mininet network emulator. The experiments demonstrate the feasibility of our proposal, which
provides high rates of detection, not only in pure SDN environments but also in mixed ones.
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1 Introduction

Client–Server (CS) architectures for streaming multimedia
content on the Internet experience scalability issues when a
large number of clients try to access the same media content.
This problem worsens when live broadcasts are involved. To
address these scalability problems, many peer-to-peer (P2P)
protocols have been developed over the last two decades.

Compared to CS systems, in P2P overlays, the peers con-
tribute with their upload bandwidth, allowing the transmis-
sion of the stream to more receivers in real time. Moreover,
this approach brings some interesting benefits, such as traf-
fic reduction or a decrease in latency, particularly within ISP
(Internet service provider) networks and last-mile scenarios.

Unfortunately, the contribution of the peers to the overlay
makes it vulnerable to attacks, especially in the case of push-
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based fully connected overlays, where each peer receives an
exclusive chunk from the source and is the only one respon-
sible for relaying it to the rest of peers. Two of the most
common attacks are pollution and free-riding attacks, and
they become much more difficult to mitigate when they are
selective, i.e. they targeted certain peers but not others. Such
actions make detection more difficult to achieve because
Malicious Peers (MPs) try not to be detected by trusted
peers 1 (TPs) or trust management systems. For example,
the attackers can collaborate to detect who TPs are, thereby
avoiding attacking them by conducting a selective attack.

To manage these problems, trust management systems, or
incentive mechanisms have been proposed ever since P2P
networks became popular [1–4]. However, the performance
of such techniques in push-based fully connected overlays is
not ideal as most of them allow malicious behaviors in the
teamwhich are under a certain threshold. In some cases, they
even make wrong decisions, resulting in Honest Peers (HPs)
being unfairly expelled from the team.

The sender needs to know the destination endpoints
(EPs) to perform communication on the Internet. Apart from
servers load balancing, DHCP, etc., endpoints usually deter-
mine univocally a final device. This helps MPs to estimate
how safe an attack based on previous information about the

1 TPs are able to verify whether a message is legitimate or missing, and
they will report any bad behavior if necessary.
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endpoint is. A new architecture, called software-defined net-
working (SDN), aiming to facilitate network management
as well as enable efficient programming of network con-
figuration is becoming increasingly more popular. In this
context, the programmable feature of SDNmakes it possible
to dynamically modify the destination End Point (EP, i.e.,
the IP address and port) in the packets in order to implement
a moving target defense (MTD). For this reason, we herein
study a technique based on SDN and MTD to identify and
expel MPs from the overlay in a short period of time and
avoiding incorrect decisions, i.e., without expelling honest
peers.

The main contributions of this research are the following:

• Study a method for detecting and expelling malicious
peers in a P2P push-based fully connected overlay in a
deterministic way, avoiding the false positive and false
negative results observed in other methods such as peer
polling or trust management systems.

• Perform experiments and analyze the performance of the
proposed technique using the peer-to-peer straightfor-
ward protocol (P2PSP) simulator.

• Study the feasibility of applying our proposal to a mixed
network using SDN and non-SDN devices.

This paper is organized as follows. Section 2 summarizes
the P2PSP protocol. A review of the related work in tar-
geted attacks and MTD topics is shown in Sect. 3. Section 4
describes our proposal for discovering and expelling mali-
cious peers by using an SDN approach. Several experiments
are carried out in Sect. 5 to obtain the accuracy and effec-
tiveness of the proposal used in conjunction with the P2PSP
protocol. Finally, our conclusions are shown in Sect. 6.

2 Peer-to-peer straightforward protocol

In order to specifically explain the problemwe are addressing
and the proposed solution, a brief description of the peer-to-
Peer straightforward protocol (P2PSP) is introduced in this
section. P2PSP was proposed as an application-layer pro-
tocol that provides real-time broadcasting, also known as
application layer multicast (ALM), of a media stream on
the Internet. It has a modular design implementing differ-
ent functionalities, which allow us, among other things, to
deploy a hybrid architecture with CDN, and P2PSP in the
“last-mile”. One of the hardest problems to tackle in P2PSP
(and, by extension, in push-based fully connected protocols)
is themalicious behavior of some peers. Althoughwe experi-
mented with some solutions to mitigate these problems [5,6],
they were not fully neutralized. In this study, we take advan-
tage of the SDN technology to eradicate targeted attacks.

2.1 Description

P2PSP [7] deploys push-based mesh-shaped overlays, and is
specifically designed to minimize the latency of live media
streaming, particularly in local environments. Therefore,
hybrid CS/P2P structures can be used to deploy massive
systems with P2PSP. For instance, the media could be first
transmitted at the backbone level over a CDN, and P2PSP
could be used for the last-mile links. In this way, the solu-
tion shows a better bandwidth consumption and it is more
ISP-friendly than a complete P2P approach. Moreover, this
allows for a low latency because peers inside a P2PSP team
(a single P2PSP overlay) are close to each other.

Some key features of P2PSP are:

– Content agnosticThe protocol does not analyze the trans-
mitted information and does not depend on a specific
media format.

– Modular architecture It is structured in differentmodules,
eachoneproviding adifferent functionality.The selection
of the modules depends on the requirements of the target
system.

– Low requirements The most basic modules can run on
resource-constrained hardware.

– IPmulticast support IPMulticast can be usedwhen avail-
able.

– Private network support Peers can participate from
within private networks, even when they are behind most
NATs, including certain types of symmetric NATs.

– Full-connected topologyWhen available, all nodes push
data to the rest of the nodes in 1-overlay-hop, minimizing
the latency.

– I/O ratio close to 1 In full-connected scenarios, all nodes
send and receive the same amount of data.

– CDN friendly It is compatible with the CS model, allow-
ing a hybrid architecture.

2.2 Node roles

P2PSP defines the following entities (see Fig. 1):

– A Source It produces the stream. It is usually a stream-
ing HTTP server hosted by the content provider which
produces the content or relays it from other sources. Sup-
posedly, the source controls the transmission bit-rate for
the entire team. P2PSP does not understand the stream
content, and, therefore, it is not able to perform a data-
flow control.

– A Splitter (S) S receives the stream from the source,
splits it into chunks of data and sends them to the peers.

– One ormore Peers (P)Each peer receives chunks from S
and other peers, sorts them into a buffer to reconstruct the
original stream and sends them to the player. All chunks
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Fig. 1 A typical P2PSP team running the data broadcasting set of rules.
The numbers on the arrows represent the chunks that are being trans-
mitted

received from S are relayed to other peers, following a
predefined set of rules.

– One or moreMonitor Peers (P) They are similar to reg-
ular peers but with the extra functionality of reporting
which chunks are lost to S. They can act as TPs.

– One or more Players (L) They are in charge of decoding
and playing themedia. Each peer can feed several players
simultaneously.

2.3 Data broadcasting set of rules

Data broadcasting set of rules (DBS) describes the minimal
set of rules needed for P2P broadcasting over the Internet.
In DBS, S sends the chunks to the peers using a round-robin
scheduling scheme, and each peer relays the last chunk that
has been received from S to each other peer. In order to avoid
network congestion, peers relay a chunk upon reception of
another chunk from another peer or S. However, upon a new
chunk reception from S, the previous chunk is relayed in
burst mode to pending peers.

Every node of the team knows the EP of the rest of the
peers and has access to the peer list used by S to send the
chunks to peers, which in turn is used by peers to forward
the chunks received from S to each other peer. When an
incoming peer Px is accepted by S to join the team, S sends
it the current list and adds Px to the list. In order to accelerate
the inclusion of Px in the team, Px sends a [hello]message
to every other peer as soon as the other peer’s EP is received
as a new element of the list. When Px leaves the team, it
sends a [goodbye] message to the rest of the team. Then, S
and the rest of the peers that remain in the team stop sending
chunks to Px .

In P2PSP, every peer must retransmit the same amount of
data that it receives. Thus, the overlay is fair and it is easier to
recognize free-riders. A peer that cannot fulfill this rule must

leave the team. In order to achieve this requirement, each
peer Pi assigns a counter to every other peer Pj of the team.
When a chunk is sent to Pj , its counter |Pj | is increased, and
when a chunk is received from Pj , |Pj | is decreased. If |Pj |
reaches a threshold, Pj is deleted from the list of peers of Pi
and it will not be served anymore by Pi . Using this procedure,
peers Pk leaving the team that failed to send the [goodbye]
messages are automatically treated as selfish peers by the rest
of the team and removed from their list of peers. S detects this
situation because the monitors of the team report the chunks
lost to S, which remembers the receiver of each chunk it has
sent. For each peer, S counts the number of lost chunks. A
peer is removed from the list of S when the counter for that
peer reaches a threshold in a given interval of time.Moreover,
lost chunks are retransmitted by S to the existing team.

3 Related work

3.1 Targeted attacks in P2P networks

Pollution attacks are based on relaying chunks of the stream
with polluted information instead of correct chunks. Versions
differ in how the receivers are selected (random, selective or
all) andwhether themalicious peers collaborate or not to pol-
lute chunks in order to not be detected [5]. The effects of the
pollution attacks on P2P video streaming systems are signif-
icant [8]. Such repercussions have brought about the advent
of several techniques in the literature, most of which are
focused on pull-based systems, where peers ask for chunks
from other peers andmaintain the peers that behave correctly
with a better performance, i.e. send correct chunks with big-
ger throughput. Therefore, in pull-based systems malicious
peers are easily detected and isolated. On the contrary, in
push-based overlays peers send chunks to other peers with-
out explicit requests. The advantage of push-based systems is
the reduction of bandwidth usage due to the lack of requests.
However, studies on overcoming pollution attacks for fully
connected push-based overlays are scant. The main problem
with this type of pollution attack is that receiving peers do
not usually select the sending peers and therefore, it is more
sensitive to pollution and free-riding attacks. Both types of
attacks have the same impact and can be treated in the same
way.

Peer polling and trust management systems are frequently
used solutions to deal with pollution attacks [1,2]. Unfor-
tunately, they can produce false positive and false negative
results when a targeted attack is carried out.

Although non-repudiation systems are a good approach,
since they are reliable in making decisions about expulsion,
a serious issue arises when they are applied to P2P systems:
a trusted third party (TTP) is usually implicated in the pro-
cess, which does not satisfy one of the main requirements
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of the P2P systems: scalability. In the literature, we can find
some approaches that do not use TTPs, for example [9], but
these are based on the premise that MPs are interested in the
content, an assumption that does not necessarily have to be
true.

Another popular solution is the use of incentive mecha-
nisms, as they make sure that only fruitful connections are
kept. Unfortunately, this approach is not feasible in a P2P
push-based fully connected overlay becauseMPs do not need
the chunks from others in order to pollute or to refuse to send
the chunks they relay.

In recent years, we have studied several techniques for
fighting against attacks in P2P push-based fully connected
overlays. As we concluded in [6], the combination of a col-
laborative and a selective attack has a severe impact on a P2P
push-based fully connected system. In fact, we proposed a
simple mechanism which introduces TPs into the team and
tries to hide themwith theobjective of detecting andexpelling
theMPs.We realized that a defense strategy using only TPs is
not suitable when the number ofMPs is large. This is because
we are dealing with a multi-objective optimization problem
and each decision made by MPs may have a TP’s counter-
measure. For instance, under a collaborative-selective attack,
when a TP is discovered, it will never be attacked again. So,
the effectivity of a TP disappears. We proposed a novel solu-
tion based on Shamir’s secret sharing to force peers to relay
unpolluted content to HPs in order not to be expelled [5]. In
that study, our motto was simple: if you want to remain in
the team you must show good behavior with at least t peers.
After analyzing our proposal, we concluded that, under the
premise that there are fewer MPs than HPs, the most severe
attack is fullymitigated. However, there are still other attacks
that are not detected using this strategy.

One obvious option to improve the detection performance
is to increase the number of TPs. However, we realized that
the main problem in previous models is the static nature of
the system. In the first model, MPs are able to perform a
collaborative attack in a selective way to scan the network
looking for TPs, identify them, and behave correctly with
them but not with others. In this way, they remain in the team
without being expelled. In the secondmodel,MPs can survive
in the team indefinitely as long as they behave correctly with
a number of peers greater than or equal to Shamir’s threshold.

Nowadays, thanks to technologies such as SDN, it is pos-
sible to design new techniques in order to make the network
more dynamic. A good example of this is the concept of
MTD.

3.2 Moving target defense

Recent research on the proactive defense concept has led
to two major mechanisms: (i) moving target defense, which
increases the complexity, diversity, and randomness of the

Fig. 2 A simple version of the network architecture with only one SDN
device. The communication scheme is also shown. The ports of the EPs
have been ignored in this example for the sake of simplicity. Note that
source (src) and destination (dst) IPs are represented in the figure with
the last octet in decimal format

cyber systems to disrupt adversaries’ reconnaissance and
attack planning, and (ii) cyber deception, which provides
plausible-looking yet misleading information to deceive
attackers [10]. Moving Target Defense (MTD) is a research
hotspot in the field of network security [11], and a survey
of MTD can be found in [12]. Our approach can be clas-
sified as Moving Target Network Defense (MTND) with IP
address and portmutation [13]. NetworkAddress SpaceRan-
domization (NASR) force hosts to change their IP addresses
frequently [14]. Instead of performing a random change of
peers’ IPs, a transparent moving target defense using SDN
is presented in [15]. In a similar way, our model is based on
a random change of target IPs among peers by scrambling
peers’ EPs in SDN devices. In this way, the original P2PSP
protocol is unaltered. An introduction to network address
shuffling can be found in [16].

4 Studied solution

Keeping our previous strategy for combating pollution/free-
riding attacks nearly intact by using TPs [6], we introduce an
SDN controller algorithm which is applied only to the UDP
traffic involved in the P2PSP protocol.

4.1 Detectionmethod

As shown in Sect. 3, the main weakness of adding TPs in a
P2P team is that TPs could be discovered by MPs and, as a
result, they could perform targeted attacks, thereby avoiding
the pollution of chunks whose destination is a TP. Therefore,
a simple way to prevent such as situation is hiding the des-
tination EPs from the entire team (excluding S). However,
in a P2P system, every peer needs to communicate with the
rest of the peers directly, so they have to send packets to their
specific EPs.
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To achieve the goal of changing the destination EPs, we
have designed and implemented the pseudocode shown in
Algorithm1.2 This algorithm is located in the SDNcontroller
as a Ryu app [17], and consists of exchanging the destination
EP of messages sent by peers using an association table. The
entries of this table are indexed by the destinationEP towhich
a peer intends to send a message, and they contain the actual
EP of the peer that will receive it. An example is presented
as follows (see Fig. 2):

(1) S sends a chunk to P1, the first peer in the team. The
OF (OpenFlow) switch redirects the packet to the Ryu
controller as it has no rule in charge of managing this.
The controller takes a reactive approach, i.e., it analyzes
all messages from S to know when a new round will
arise (a round starts when S sends a message to the first
peer in the list of peers in the team).

(2) The Ryu controller, which runs our P2PSP Ryu app
(Algorithm 1), generates a table, the so-called scram-
bling table, which associates the original and actual
destination EPs of the peers. This assignment is random-
ized in each round. The scrambling table is sent in the
form of rules (allowed flows) to the SDN device using
the OpenFlow protocol [18].

(3) After installing the new flows, the chunk is sent to the
destination P1.

(4) P1 sends a chunk to the first peer in its list of peers. Let us
assume that it is P2. Therefore, the source of themessage
is the IP address 192.168.0.1, and the destination IP is
192.168.0.2.3

(5) When the message reaches the SDN device, the desti-
nation is changed and then redirected to the new EP. In
the example of the Fig. 2 , P3 (192.168.0.3) is the actual
destination address and P3 receives the message.

(6) P1 sends a chunk to the second peer in its list of peers,
which is P3 according to our example. Therefore, the
source of the message is the IP address 192.168.0.1, and
the destination IP is 192.168.0.3.

(7) As in Step 5, when the message reaches the SDN device,
it redirects themessage following the rules received from
the controller. Then, the original destination is changed
to a different destination. In this case, P2 (192.168.0.2)
is the destination which receives the message.

The random shuffle applied to the EPs of the peers in the
team can cause the new destination tomatch the source of the
message. In this situation, the controller makes a new change
to send the message to another destination different from that

2 The full version of the code is available as open source at https://
github.com/P2PSP/SDN-P2P.
3 In this discussion, the ports of the EPs have been ignored for the sake
of simplicity.

of the source. For instance, according to the scrambling table
in Fig. 2, when P2 sends amessage to P3, the new destination
is P2 ((.3,.2) in the scrambling table), but this would cause
the loss of the message. In this case, the controller uses the
element in the scrambling table that has the original origin
(.2), which is (.2,.3). Thus, the final destination is P3. This
does not cause duplicates at reception.

Algorithm 1 P2PSP Ryu app algorithm
INPUT: peer_list, packet, splitter

1: scrambling_table = dict(zip(peer_list, peer_list)) #Create a
scrambling table for associating original EPs with new destinations
EPs

2: if P2PSP UDP packet then
3: if splitter’s packet and new round then
4: clean_flows() #Remove rules from devices
5: shuffle(scrambling_table) #Assign a new EP mapping
6: else if packet destination in scrambling_table then
7: store mapping for IP to Mac and Mac to Port
8: if scrambling_table[destination] is myself then
9: destination = myself
10: new_destination = scrambling_table[destination]
11: add_Flow(new_destination) #Add new rules for the device
12: send_PacketOut() #Send modified packet

4.2 Vulnerability analysis

Since peers can only decide to send the chunks or not and,
in the cases where they are sent, whether they are polluted
or not, it is impossible for MPs to bypass the system using
these attacks.

In the specific case of the P2PSP protocol, one of the rules
in DBS says that “peers stop communicating with a peer if
they do not receive anything from it”. When using an SDN,
this rule constitutes a weakness because an attacker could
know the real peer who received its packet. For instance, if
an MP attacks peer Pi , and in the next round Pj does not
send anything to the MP, it could know that the EP assigned
in its list of peers for Pi in the previous round was actually
mapped to the EP of Pj . A similar procedure could be used
by a group ofMPs to detect whether or not they are behind an
SDN device. With the aim of making MPs unable to perform
target predictions, we opted to remove said rule from the
protocol and each HP continues forwarding chunks to all
members of the team, even when it is attacked.

We could imagine a challenging scenario in which the
number of MPs is half of the team, and each MP attacks
just one peer in a collaborative way (in which attackers share
information about the attack). Thus, they can know the cur-
rent scrambled EP for the TPs: which are the EPs used by the
expelled peers. However, as soon as a new random scram-
bling is done, all TPs are hidden again.

https://github.com/P2PSP/SDN-P2P
https://github.com/P2PSP/SDN-P2P


C. Medina-López et al.

To determine the viability of our approach we evaluate the
following security MTD properties of our system. For this
purpose, we use the properties identified in [19,20]:

– Unpredictability As previously stated, our approach
includes the use of a random number generator to shuffle
the EPs in a transparent way for peers. Thus, MPs cannot
guess the real destination EP in a new round scrambled
by themselves.

– Vastness The scrambling is performed on a current set of
peers’ EPs. Exhausting the EP (or even the IP) space is
a general attack that will not affect the P2P protocol for
the current set of peers.

– Periodicity The scrambling period parameter guarantees
the periodicity.

– Uniqueness Although peers do not know who the real
destination is, the controller knows this information all
along. Therefore, all peers in the team are uniquely iden-
tified by their real EPs.

– Revocability All flows in our system are specific to
the destination. So, it is possible to modify individual
records.

– Availability Our approach does not introduce new avail-
ability constraints and thus meets the availability prop-
erty.

– Distinguishability Trusted peers are in charge of distin-
guishing HPs from MPs and expelling the latter.

4.3 Probability of detection

Let us suppose we are dealing with a team of 10 peers, in
which one is a TP and one is an MP in a managed network,
and the scrambling is performed before every round.MPonly
pollutes one chunk or does not send a chunk in each round.
The probability that the MP attacks the TP in the first round
is p = 1

9 = 0.111. However, what is the probability of TP
being attacked in the second round? For that to happen, two
eventsmust occur: i) TheMPdoes not attack theTP in thefirst
round, and ii) theMP does attack the TP in the second round.
Therefore, the probability is p = 8

9 × 1
9 = 0.098. Based on

this information, the probability that the MP attacks the TP
in round r in a team of size Z > 2 is

p =
(
Z − 2

Z − 1

)(r−1)

× 1

Z − 1
. (1)

However, we are more interested in knowing the probability
of detecting an MP after N rounds than precisely in round r .
Therefore, the expression of the probability we are interested
in is

p =
N∑

r=1

((
Z − 2

Z − 1

)(r−1)

× 1

Z − 1

)
. (2)

4.4 Cost of performing scrambling

There is certain essential information that must be known in
order to measure the impact of implementing this solution in
an SDN environment. It could be defined in terms of network
traffic, such as the exchange of messages between the con-
troller and switches, or the number of flows to be installed. It
could also be defined in terms of detection cost. Both options
will depend on how many rounds of scrambling take place,
yet this will be different in each scenario.

As for the network cost, this can be reduced by decreasing
the number of rounds in which a new scrambling takes place.
However, this action increases the detection time because the
higher the number of rounds to redo the scrambling, the later
the detection of the MPs.

Therefore, the additional costs added by this solution are:

– Traffic of chunks from S to the controller in order tomon-
itor the round status (caused by a reactive approach). It
could be optimized by sending direct orders from S to the
controller only in each new round (proactive behavior).

– Flows cleaning and re-installation, which will depend on
the scrambling period, one or several rounds.

Every time that a scrambling is performed, three related
tasks are required, which in turn affect the overhead:

1. Cleaning the flows in all SDN devices. To do so, the
controller has to send a OFPT_FLOW_MOD message
[21] to all devices in order to remove every flow from
their tables. The process of sending such a packet entails
an overhead of 48 bytes for each SDN device.

2. ScramblingEPs in the controller dictionary. This involves
a cost related to the CPU usage, which will depend on
the number of EPs to scramble and, of course, on the
used algorithm used to generate randomness. This over-
head can be considered negligible for present-day SDN
controllers.

3. Installing new flows in all SDN devices. A new
OFPT_FLOW_MOD packet is sent to each SDN device
where peers are connected. It is also necessary to send
flows to create connections among SDN devices. There-
fore, the overhead in this step is the sum of computing
the following expression for each SDN device in our
managed network: 48 bytes × (connected peers + SDN
connected devices).

4.4.1 Modifying the scrambling period

One of the main concerns in our approach is related to
the increase in the network traffic and the number of flows
installed in the SDNdevices. Both of them are closely related
to the scrambling period parameter.



An SDN approach to detect targeted attacks in P2P fully connected overlays

The probabilities of detection are reduced as the scram-
bling period is increased. These results can be modeled by
adding the scrambling period parameter s to the expression
in Eq. (2), resulting in

p′ =
N∑

r=1

((
Z − 2

Z − 1

)(� r
s �−1)

× 0(r mod s)

Z − 1

)
. (3)

In this way, the networkmanager can decide on a trade-off
between the scrambling period r and detection efficiency p′.

4.4.2 Minimizing costs

In the current implementation, we take an SDN reactive
approach to managing flow entries installation, which means
that if there is not a match for the flow in the SDN device, it
creates a packet-in packet [21] and sends it to the controller
for further instructions. The controller analyzes the packet-in
and sends the appropriate flow entries to the device. There-
fore, if the scrambling period is one (changes in each round),
the flow entries are valid only for one round and have to be
updated for each round. In caseswhere the audience is known
beforehand, for instance in prepaid pay-per-view events, we
could take an SDN proactive approach. Rather than reacting
to a packet, it consists of populating the flow tables from
the controller to all SDN devices for any future traffic that
matches the flows among all possible peers. If some pre-
dicted peers are not connected, this solution only affects the
overhead because peers send chunks to non-existent peers,
but the condition that all existing peers receive the stream is
fulfilled. Moreover, we could adopt a number of controller
location techniques for scalability and traffic optimization
reasons [22].

4.5 Mixed network using SDN and non-SDN devices

Our approachwas designed for proper operation in a network
architecture where all devices are equipped with SDN tech-
nology. However, it could prove to be of great use under
a network which mixes traditional and SDN devices. To
accomplish this, some decisions must be made about where
the scrambling is performed.

Assuming a network with SDN and non-SDN devices we
must consider different scenarios:

– SDN devices are in the core of the networks, i.e., no
peer is connected directly to them. Under this scenario,
it is very risky to carry out an EP scrambling because we
must first know the routing table for every device in the
network which is traversed by chunks in order to make
sure that all peers receive all chunks. Unfortunately, this
is something that cannot be guaranteed.

Fig. 3 An example of a network architecture with SDN and non-SDN
devices running the P2PSP with our SDN approach

– SDN devices are the gateways of a set of peers (see
Fig. 3). In this case, the scrambling can be performed
in the outgoing chunks, but also in the incoming chunks
if the destination EP is also connected to a SDN device.
Since the controller is a centralized entity, it takes con-
trol of the scrambling by analyzing the new packets and
sending the appropriate flows to the respective devices.

In order to achieve the goal of applying the studied solu-
tion tomixed environments, we have added aminimal update
to the P2PSP Ryu app. It consists of adding a list of devices
managed by the controller and informs on which peers are
connected to each managed device. With this modification,
we can verify whether a message has been previously modi-
fied by the controller or not. The idea is to avoid a double EP
scrambling and to make sure that all peers receive all chunks
once.

For the sake of simplicity, let us assume that there is a
team with Z = {Z in ∪ Zout} peers. One of them is anMP and
another is a TP. The managed network has Z in peers, includ-
ing the TP. So, Zout peers are outside the managed network.
We can differentiate four possible attacking scenarios:

1. Attacks happen outside the managed network:
When an attack occurs between peers in Zout, the attack
cannot be detected because the scrambling algorithm is
not working among these peers and there is no outside
TP. However, this attack does not affect peers in Z in.
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2. Attacks happen inside the managed network:
Attacks among peers in Z in will be detected thanks to the
scrambling approach, using Z = Z in in (2) or (3).

3. Attacks from outside to inside the managed network:
If a peer in Z in is attacked by the MP in Zout, the attack
is detected because the scrambling can change the desti-
nation peer to another peer in the managed network that
could be the TP. In this case, the probability of detec-
tion is given by using Z = Z in + 1 in (2) or (3), i.e., the
number of peers inside themanaged network plus theMP.
Equations are correct only if theMP attacks the managed
network in all rounds.

4. Attacks from inside to outside a managed network:
When the MP in Z in attacks a peer in Zout, the attack is
not detected. Although the attack does not cause damage
in the SDN environment, it affects peer in Zout. To avoid
this, we could improve the proposed algorithm by using
two different scrambling tables:

(a) A list with peers in Z in, which is used for scrambling
when the chunks come from outside.

(b) A list with all peers, which is used for scrambling
when the chunks leave the managed network.

The pseudocode for the Ryu controller including this
improvement is shown in Algorithm 2.
Therefore, the probability of detection (2) or (3) is
reduced by Zin

Z , which is the probability of redirecting
the MP’s message to the managed network.

Previous considerations can be extended to instances with
severalmanaged networkswhere SDNdevices are controlled
by the same controller and the scrambling table contains the
Z in peers in all managed networks.

Consequently, the studied solution works in a mixed net-
work maintaining some of the benefits as in a fully SDN
architecture.

5 Experiments

In all the simulations shown in this section, peers are in a
managed network. Simulationswere carried outwithMininet
network simulation tool [23], on an Intel Core i7 CPU 860
@ 2.80GHz x 8 machine with 16 GB of RAM, using Ryu
SDN Framework as the SDN Controller [17].

5.1 Fixed versus variable targets attacks

Assuming EPs are shuffled in each round, an MP could
think that changing the target could reduce the probabilities
of being detected, especially if the scrambling is pseudo-
random, meaning a totally different EP association is forced

Algorithm 2 P2PSP Ryu app algorithm for mixed networks
INPUT: peer_list_b, packet, splitter

1: peer_list_a = remove_external_peers(peer_list_b) #Remove peers
outside the management networks

2: scrambling_table_outside=dict(zip(peer_list_a, peer_list_a)) #Cre-
ate a scrambling table associating original EPs with new destina-
tions EPs for using among peers outside (only includes peers into
the management networks)

3: scrambling_table_inside=dict(zip(peer_list_b, peer_list_b)) #Cre-
ate a dictionary for associating original EPs with new destinations
EPs for using among peers inside (it includes all peers into the team)

4: if P2PSP UDP packet then
5: if splitter’s packet and new round then
6: clean_flows() #Remove rules from devices
7: shuffle(scrambling_table_outside) #Assign a new EP

mapping
8: shuffle(scrambling_table_inside) #Assign a new EP mapping
9: else
10: if packet comes from outside then
11: scrambling_table = scrambling_table_outside
12: else
13: scrambling_table = scrambling_table_inside
14: if packet destination in scrambling_table then
15: store mapping for IP to Mac and Mac to Port
16: if scrambling_table[destination] is myself then
17: destination = myself
18: new_destination = scrambling_table[destination]
19: add_Flow(new_destination) #Add new rules for the

devices
20: send_PacketOut() #Send modified packet

for each round. In that case, using a variable target could
prove helpful because, if the target is fixed after n rounds,
it means the MP has attacked the entire team. However, the
same does not occur in the case of a totally random scram-
bling because the EP mapping is unpredictable. For this
reason, we decided to implement a totally random mapping.
In this scenario, the probabilities of an MP being detected
should be the same regardless of the attack method, whether
it be fixed or variable.

We run a set of experimentswith the following parameters:

– Team size from 10 to 100.
– Samples 100 samples (executions) for each instance.
– Period 1, i.e., all the executions perform one scrambling
per round.

– Cases fixed and variable target attacks. One per round.

Results of the experiments are shown in Fig. 4. For both
fixed target and variable target attacks, the results fit quite
well with the probability model p in (2). An MP is usually
detected before 60 percent of the number of rounds equals
the team size. This percentage is the same as the average per-
centage of vulnerable computers contacted as the normalized
shuffle rate increases, which was calculated in [24]. Whereas
the perfect shuffling cost results in a drawback due to the rel-
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Fig. 4 Experimental detection probabilities of an MP performing one attack per round. Scrambling period = 1

atively high percentage for an attacker to find a vulnerable
host, in our case the scrambling is worth its cost due to the
relatively high percentage to reach the trusted peer.

This justifies the idea of keeping the EP mapping totally
random in order to avoid a smart attack whereMPs can figure
out how the dynamic scrambling is carried out for a hypothet-
ical pseudo-random system. For all team size configurations,
the probability of detection is very close to 1 when the num-
ber of rounds triples the size of the team. For instance, in a
teamwith 100 peers, the probability of detection before round
300 is 0.95. Thus, assuming an average bitrate of 2500 kbps
(typical HD 720p video), and a chunk size of 1024 bytes, the
MP will be detected and expelled before t = 98.3 s.

Regarding the consequences for the detection system
whenopting for afixedor variable type of attack,we conclude
that the probabilities of detection are quite similar. There-
fore, an MP will be detected and expelled in the same way
regardless of the type of attack it carries out. Additionally, a
variable attack makes no sense in a traditional network with-
out scrambling because after each target change is made, the
malicious peer is nearer to being discovered. Moreover, MPs
performingmore than one attack per roundwill increase their
probability of being detected.

5.2 Modifying the scrambling period

Modifying the scrambling period parameter helps us to
reduce the CPU usage, network traffic and the number of
flows installed in devices. However, it causes a loss in the effi-
ciency of MP detection. Figure 5 shows a set of experiments
carried out for a team of 100 peers varying the scrambling
period (100 samples for each one).

The simulated MP detection is close to the probability
model shown in Eq. (3). As expected, the number of average
rounds to detect the MP with a probability greater than 0.9
increases significantly with the scrambling period.

6 Conclusions and future work

In this study, we analyze a moving target defense based on
scrambling the target EPs in SDN devices in order to detect
malicious peers in peer-to-peer fully connected push-based
overlays by using trusted peers. The experiments demon-
strate the viability of our proposal, resulting in a relatively
quick MP detection (in relation to the overlay size), not only
in pure SDN environments but also in mixed environments
where some peers are on the Internet and others are under
managed networks.

Sincemodifying the scramblingperiodhas a severe impact
on the performance of the detection algorithm, we propose
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Fig. 5 Experimental results for MP detection probabilities with differ-
ent scrambling periods

optimizations such as a proactive approach and controller
location techniques as possible future lines of work.
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