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• Thermal imaging can be used to detect falls while preserving privacy.

• Multimodal detection is crucial for selecting the appropriate devices.

• Convolutional and recurrent neural networks are appropriate for de-
tecting falls.

• A service with a voice assistant and a large language model reduce false
positives.



Privacy-aware Fall Detection and Alert Management in

Smart Environments using Multimodal Devices

Abstract

Falls are a leading cause of injury and mortality, especially among the
elderly. While camera-based fall detection systems have shown success, they
raise significant privacy concerns. Alternatives using wearable sensors or
thermal cameras offer comparable accuracy but have yet to be combined for
fall detection. Additionally, most research focuses on fall detection without
addressing post-fall user condition or personalized alerts. This study aims to
develop a privacy-aware fall detection and alert system leveraging both wear-
able sensors and thermal cameras. The system improves detection accuracy,
addresses privacy concerns, and enhances alert management through per-
sonalized responses. We propose an Internet of Things (IoT)-based system
integrating thermal cameras and wearable sensors. Edge-based computation
enables real-time detection, with Internet connectivity used only for send-
ing alerts in case of a fall. Various machine learning algorithms and sensor
data are evaluated to determine their impact on detection accuracy. The
system also includes voice interaction for user engagement. Experimental
results show that fall detection using a convolutional neural network with
thermal images from three viewpoints achieves an F1-score above 0.98. Sim-
ilarly, traditional machine learning algorithms applied to wearable sensor
data showed high performance. Post-processing techniques effectively reduce
false positives, improving reliability. The proposed system ensures high ac-
curacy while addressing privacy concerns. By integrating multimodal devices
and edge-based computing, it offers a scalable, real-time solution for smart
environments, ensuring timely responses through personalized alerts after
falls.

Keywords: Fall detection, Multimodal devices, Alert system, Deep
Learning, Thermal cameras

Preprint submitted to Internet of Things January 21, 2026



1. Introduction

Following road traffic accidents, falls represent the second most com-
mon cause of mortality globally [1]. The predominant proportion of falls is
attributable to physiological and pathological alterations (morbidity, func-
tional decline, inactivity, depression, and loss of autonomy [2]) associated
with aging [3], a concern expected to escalate due to the increasing age of
the population. The demographic of people over 60 years is projected to dou-
ble in 2047 and triple in 2079 [4], presenting a formidable challenge to public
services and the financial resources necessary to mitigate their impact [5, 6].

In this context, Ambient Assisted Living (AAL) systems can provide
crucial support by enabling continuous monitoring and detection of abnormal
situations, such as falls [7, 8], thus reducing hospitalizations and associated
costs [9]. Current Fall Detection (FD) solutions generally rely on body-worn
devices (e.g., sphygmomanometers) and cameras, which have demonstrated
high accuracy in identifying falls [10]. However, deploying these systems in
real-world environments remains a challenge due to high false negative rates,
and privacy concerns have emerged as a significant barrier to wider adoption.

Thermal sensors have recently been proposed as an alternative that pre-
serves user privacy while maintaining performance in low-visibility condi-
tions [11]. Similarly, wearable sensors such as wristbands and smartphones
offer a mobile solution for fall detection without spatial restrictions, though
they typically exhibit lower precision compared to camera-based methods [12].

The integration of vision-based systems, ambient sensors, and wearable
devices, termed “multimodal FD,” has emerged as a promising approach,
with the potential to better adapt to diverse environments and improve de-
tection accuracy [12]. Although multimodal datasets combining cameras,
wearable sensors, passive infrared sensors, and microphones exist [13, 14],
thermal sensors have not yet been widely incorporated into these datasets.
Moreover, there has been limited assessment of the strengths and weaknesses
of different sensor modalities in identifying fall events across various contexts.

While the primary focus of many FD systems is maximizing detection
accuracy, the critical task of delivering personalized alerts to caregivers or
healthcare professionals has been largely overlooked. Most alert systems fail
to account for the user’s condition following a fall, such as whether the indi-
vidual has recovered, sustained injuries, or requires immediate assistance [15].
Understanding the progression of the fall and accurately assessing the indi-
vidual’s post-fall state are essential for minimizing false alerts and ensuring
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timely, appropriate interventions.
This paper addresses these challenges by proposing a privacy-aware fall

detection and alert management system using multimodal devices, including
thermal cameras and wearable sensors. The goal is to achieve high detection
accuracy while ensuring user privacy, alongside real-time alert management
tailored to the condition of the individual post-fall. We present a compre-
hensive framework for fall detection that integrates thermal cameras and
wearable devices, such as smartwatches and smartphones. Upon detecting a
fall, the system automatically activates a voice assistant, which evaluates the
user’s level of consciousness and assesses the consequences of the fall through
direct interaction with the individual. Based on the assessed risk level, the
system can initiate an emergency call or send alerts to family members and
healthcare professionals. Specifically, the key contributions of this study are
as follows:

• A thorough comparison of thermal imaging and wearable-based devices
for fall detection, incorporating various pre-processing techniques and
Machine Learning (ML) models.

• The creation of a dataset, UAL - Multimodal Fall Detection Dataset
(UAL-MFDD), which includes data from three sources: thermal im-
ages captured from three distinct perspectives, and gyroscope and ac-
celerometer data collected from a smartwatch and a smartphone.

• The development of a voice assistant system that evaluates the user’s
condition post-fall, and either notifies relevant parties or contacts emer-
gency services, depending on the severity of the situation.

• An explainable validation of the proposed neural network, using LIME
[16], adapted to process sequences of images.

The remainder of the article is organized as follows. Section 2 analyzes
some FD solutions and alert systems. Section 3 thoroughly describes the
components of the proposed framework. Section 4 analyzes the performance
of the framework and, finally, Section 5 highlights the main conclusions and
future work.
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2. Related works

2.1. Multimodal FD solutions

FD systems utilize wearable devices, vision-based sensors, and ambient
sensors to detect falls [17]. Wearable devices, which are typically attached to
the user, capture kinematic data using accelerometers and gyroscopes. Early
systems relied on simple threshold-based techniques to trigger alerts [18],
though these approaches often resulted in high false positive rates. To ad-
dress this, ML [19] and Deep Learning (DL) algorithms [20] have been intro-
duced. In this domain, several widely-cited datasets, including those from
smartphones, smartwatches, IMU-based devices, and custom-built devices,
have been instrumental in advancing research [21, 22, 23, 24, 25].

Ambient devices, such as passive infrared, acoustic, and infrared sensors,
can detect falls with higher accuracy, although their effectiveness is contin-
gent on environmental conditions and limited to areas where such devices are
installed. Among these, sound sensors have demonstrated good performance
in FD [26]. However, in most cases, ambient sensors are paired with cameras
to improve fall detection accuracy [27, 28].

As previously mentioned, camera-based devices are restricted to the mon-
itored area, but the use of DL techniques [29] enables detailed scene analy-
sis, generally achieving the highest accuracy in fall detection [12]. However,
visible-spectrum cameras raise significant privacy concerns, which hinders
their deployment in real-world environments. Common architectures such as
convolutional, recurrent, and vision transformers are used to achieve state-
of-the-art performance in fall detection [30]. Similar to wearable-based so-
lutions, several video datasets are frequently employed to benchmark these
approaches [31, 32].

To further improve performance, some researchers propose integrating
multiple sensor types, a solution known as “multimodal FD” [13]. Xefteris
et al. [12] conducted a comprehensive review of existing multimodal systems,
evaluating them in terms of accuracy, response time, and power consump-
tion, all of which significantly impact real-world deployments. The review
concluded that sensor-based and camera-based solutions offer high accuracy
and low power consumption, while wearable-based solutions are notable for
their low response time and non-intrusiveness. Table 1 summarizes the vari-
ous sensor types used in multimodal FD systems.

In an effort to aid the evaluation of FD systems using multimodal devices,
the authors of [13] introduced the UP-Fall dataset, which incorporates mul-
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Type of Ambient Computational
device Privacy Comfortable dependent Accuracy cost

Wearable High No No Medium Low
Ambience Medium Yes Yes High Medium

Vision Low Yes Yes High High

Table 1: A sensors characterization used in multimodal FD systems.

tiple wearable devices attached to the user’s wrists, knees, waist, and ankles,
generating inertial data. The dataset also includes two cameras positioned at
a height of 1.82 meters and six infrared binary sensors at a height of 0.4 me-
ters. Additionally, users wore an electroencephalograph on their heads. Sev-
enteen participants took part in the experiment, performing different types
of simulated falls and Activities of Daily Living (ADL). This dataset has
become a benchmark for various multimodal FD approaches [33, 34, 35].
Similarly, the MHAD dataset [14] incorporates several accelerometers and
multi-view cameras, as well as microphones, although it does not include fall
scenarios, focusing solely on ADL recorded from 12 subjects.

In [33], a multimodal FD system similar to ours was proposed, utilizing
a Convolutional Neural Network (CNN) and an Long-Short Term Memory
(LSTM) for multimodal data processing, with promising results. However,
their test dataset deviated from a leave-one-subject-out validation approach,
including data from all users. Additionally, the visible-spectrum images used
in their study are richer in information compared to infrared images, which
can potentially lead to better results, albeit at the cost of raising privacy
concerns.

2.2. Thermal-sensors based solutions

Fall recognition using thermal images has not been extensively explored
in the literature, largely due to challenges such as noise from temperature
fluctuations and the low resolution of thermal sensors. Despite these obsta-
cles, a few studies have utilized thermal cameras for fall detection. In [36],
Optical Flow (OF) and Support Vector Machine (SVM) algorithms were em-
ployed to classify the state of the person. However, the results showed limited
improvement, with an Area Under Curve (AUC) of only 64% in the Receiver
Operating Characteristic (ROC) curve. More recent efforts have focused on
DL techniques to autonomously extract relevant information from thermal
images. In [37], a CNN with just two convolutional layers was proposed to
recognize both ADL and fall activities. Using high-resolution thermal im-
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ages, the system achieved an accuracy of 87%. The same high-resolution
images were used in [38], where a Convolutional Long-Short Term Mem-
ory (ConvLSTM) auto-encoder was introduced for fall detection, yielding an
accuracy of 83% through the inclusion of recurrent layers.

In contrast, [39] proposed an LSTM Neural Network (NN) that does not
directly process raw thermal images, which were kept at a low resolution
(32× 24 pixels) to enhance privacy. In this approach, feature extraction was
performed using OF, similar to the method applied in [36].

Notice that all reviewed works deal with the single-occupancy FD prob-
lem. However, there exist solutions that face the multi-occupancy problem.
In [11], a scheme is proposed to detect people in a thermal image, generating
single-occupancy images that are classified independently.

2.3. Main fall alert systems

While FD using multimodal sensors and cameras has been extensively
researched, the processing and management of fall-related alerts remains an
ongoing challenge.

In [40], a system is proposed that requires user interaction. When a fall
is detected, the system prompts the user with a question. If the user does
not respond, an Short Message Service (SMS) message is sent to the family,
followed by an automatic call. The person receiving the call is responsible for
assessing whether a fall has occurred and, if necessary, contacting emergency
services.

The systems described in [41, 39] implement similar alarm functionalities
using mobile alerts, SMS notifications, and automatic calls. In these cases,
the user must confirm their well-being within the application. If no response
is received, an automatic call is triggered and an SMS is sent. However,
the key limitation of these systems is the requirement for the user to have a
smartphone available at the time of the fall.

Some solutions address this limitation by removing the need for smart-
phone interaction. For instance, in [42], when a fall is detected, a Multime-
dia Messaging Service (MMS) is sent that includes a video clip of the fall.
Similarly, in [43], the alert is sent via SMS. While these systems provide
immediate notifications, they are prone to generating false positives (false
alarms).

To reduce the need for user confirmation and decrease false alarms, email-
based alert systems are proposed in [44, 45]. Upon detecting a fall, a sequence
of images is sent via email to a designated caregiver, who then determines
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whether the fall is genuine or a false positive. Although this method incor-
porates video footage to assist decision-making, emails generally have slower
delivery times compared to messaging applications like WhatsApp or Tele-
gram, making them less ideal for real-time alerting.

3. Proposal

We present a FD framework capable of understanding and identifying
the distinct stages of a fall (Falling, Fallen on the floor, and Recovering)
using multimodal sensors. Once a fall is detected, an alarm management
system evaluates the user’s condition by prompting them with a series of
questions. The user’s responses, or the absence thereof, are recorded and
transmitted to family members, healthcare professionals, or caregivers via
an instant messaging application. Additionally, upon detecting a fall and
based on user input, a smart assistant, supported by Alexa and a Large-
Language Model (LLM) such as ChatGPT1 or Ollama2, provides the user
with guidance on how to respond.

In Section 3.1, we describe the IoT system that collects data from the
environment. Section 3.2 discusses the data preprocessing techniques, while
Section 3.3 outlines the ML models used for fall identification. Finally, Sec-
tion 3.4 details the alarm management system.

3.1. IoT system

The IoT system encompasses all devices and services integrated into the
environment. It consists of two main components: sensors and devices that
collect data from the user’s interactions within the environment, and com-
munication devices that facilitate interaction between the user and the FD
system.

All devices are connected to the network via WiFi. A daemon running on
a local computer manages the reception, merging, and storage of sensor data,
while also executing the FD algorithms. Figure 1 illustrates the environment
and the physical components of the IoT system.

1https://chatgpt.com
2https://ollama.com
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Figure 1: Devices of the IoT system. Three low-resolution thermal cameras simultaneously
capture the same scene. Additionally, to determine its orientation and angular velocity,
the user wears two gyroscopes (one in a wristwatch in the non-dominant wrist and other
in a smartphone in a pocket of the trousers) and, to measures acceleration forces, two
accelerometers (same configuration). All these signals (video, and inertial data) are sent
to a local computer, which processes them and determines the appropriate action to take
when a fall is detected.
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3.1.1. Thermal cameras

In our study, three thermal cameras (FLIR Lepton 3.5) are employed,
each mounted on a Raspberry Pi attached to the wall. All Raspberry Pi
devices are connected to an Message Queuing Telemetry Transport (MQTT)
broker hosted on the central computer. To synchronize image capture, a dae-
mon on the computer transmits three messages per second to a specific topic
in the broker. Upon receiving the message, each Raspberry Pi captures an
image and sends it to the MQTT broker. The cameras are arranged in a tri-
angular configuration, positioned at a height of 1.9 meters, ensuring multiple
viewpoints of the user for comprehensive coverage and optimal perspective.

3.1.2. Wearable devices

In addition to thermal imaging, our approach integrates data from an
Inertial Measurement Unit (IMU) sensor, capturing both accelerometer and
gyroscope signals. The accelerometer records acceleration along the X, Y,
and Z axes, while the gyroscope measures rotational motion on the same axes.
These signals are collected using a smartwatch and a smartphone (refer to
Figure 1).

The IMU data is sampled at a rate of 50 samples per second, utilizing an
Android application capable of reading motion sensors3. To reduce battery
consumption, the data is temporarily buffered in memory and transmitted
to the local computer with a cadence of 2 seconds.

3.1.3. Speaker

Upon detecting a fall, communication with the user is established via a
Sonos speaker, which is connected to the local network through WiFi. The
speaker is controlled using an API written in Python called SoCo4, which
facilitates audio playback. To generate audio output, the Google Text-to-
Speech (gTTs) library5 converts a written message into an MP3 file, which
is then played through the Sonos speaker using SoCo. In particular, the
speaker activates an Alexa skill that prompts a series of questions to the user
following a fall, helping to assess the aftermath and determine the necessary
response.

3https://developer.android.com/develop/sensors-and-location/sensors/

sensors_motion
4https://github.com/SoCo/SoCo
5https://gtts.readthedocs.io
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3.1.4. Voice assistant

To engage with the user and ask follow-up questions (as outlined in the
previous section), a custom Alexa skill is triggered using the Sonos speaker,
which issues the command, “Alexa, open the fall interview.” For enhanced
availability, security and privacy, the back-end of this Alexa skill is hosted
locally on the computer, eliminating the need for an Internet connection.
The connection between Alexa and the local computer is established via an
NGROK tunnel6. The API supporting this interaction was developed using
Flask 7.

3.2. Data conditioning

The data produced by the thermal cameras and motion detection devices
must be adapted for use with ML algorithms. This section outlines the data
preprocessing techniques applied in our approach.

3.2.1. Thermal images

The thermal cameras used generate images with a resolution of 160×120
pixels, with a depth of 11 bits per pixel, at a rate of 9 frames per second.
However, for numerical efficiency, NNs require floating-point numerical repre-
sentations that operate within the interval [0, 1]. Thus, the first preprocessing
step is image normalization.

Since falls can occur in different regions of the scene, the model needs to
recognize falls regardless of the user’s location. To achieve this, the position
of the user in the scene is normalized, ensuring that the NN does not form a
bias based on where the person is located. Without this step, the model could
learn to associate the location of the person with fall classification, potentially
leading to misclassifications. For example, if 80% of falls occur when the
user is on the right side of the image, the model may become biased toward
detecting falls in that region, resulting in incorrect classifications for falls
on the left. To prevent such bias, we segmented, cropped, and centered the
person in the image, setting the background to black. This processed image is
then used as input for the fall detection system. For segmentation, we used
the YOLOv5x model8, a CNN that detects and segments objects in RGB
images, providing a mask rather than just a bounding box. Despite working

6https://ngrok.com/product/secure-tunnels
7https://flask.palletsprojects.com
8https://github.com/ultralytics/yolov5
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on gray-scale thermal images, YOLOv5x performed efficiently, running at 10
FPS on a typical computer with a NVIDIA GeForce GTX 1650 GPU.

Alternatively, we explored a different approach for segmenting the user
based on background subtraction using OF. Comparing two consecutive im-
ages, the Farnebäck algorithm [46] calculates a field of motion vectors. By
analyzing the displacement of objects, pixels with motion vectors below a
certain threshold are classified as background. The Farnebäck estimator,
even when running on a CPU, is significantly faster than YOLOv5x, achiev-
ing around 100 FPS on a typical Intel Core i7-10750H computer. Although
less accurate than YOLOv5x, this approach offers the advantage of extract-
ing motion fields as additional input for the fall detection system. In our
implementation, the motion information is represented as 160 × 120 RGB
pixels, where the luminance reflects the magnitude of the motion vector and
the chroma encodes its direction.

To summarize, the preprocessing of thermal images supports three differ-
ent fall detection configurations (see Figure 2) that are (1) using the original
thermal images without further preprocessing, (2) segmenting the person by
cropping and centering the image, with the background set to black, and
(3) combining segmented images with OF data, using the OF to represent
motion vectors.

3.2.2. IMU

The IMU data have been pre-processed using two different methods:

1. For ML algorithms, features such as the mean, maximum, minimum,
range, and standard deviation were extracted from the accelerometer
and gyroscope coordinates, following previous works [47, 48]. To refine
these features, we applied SHAP (SHapley Additive exPlanations) [49]
and Random Forest Importance [50] to determine the most important
features. As a result, 11 features from the smartwatch and 12 from
the smartphone were removed. For DL algorithms, which can process
high-dimensional data directly, the use of aggregated features is not
required.

2. A one-second window (50 samples) was used to capture the accelerom-
etry signals. We then applied Min-Max normalization, where the maxi-
mum and minimum values for each feature were derived from the train-
ing dataset, and these values were subsequently used to normalize the
features in the validation and test datasets.
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Figure 2: Data conditioning. When segmenting the person appearing in the scene, two
different alternatives have been used: (1) an YOLOv5x model, and (2) the Farnebäck
OF estimator to determine which pixels belong to the background (non-moving pixels)
and which pixels belong to the foreground (pixels presumably belonging to the subject
appearing in the scene). Regardless of the segmentation technique used, the OF has been
considered to improve fall detection (see the Table 5). Finally, the inertial data are also
pre-processed before being delivered to the FD.
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In addition to normalization, feature selection, and outlier removal, data
augmentation is an important step. By generating synthetic data that in-
troduces variations in the original dataset, model performance can often be
improved. In our case, we employed the SMOTE (Synthetic Minority Over-
sampling Technique) method [51] to enhance the dataset.

3.3. Machine learning and neural network models

Various ML and DL methods have been proposed in the literature to de-
tect falls in multimodal setups. However, no single algorithm or architecture
stands out as the best across all scenarios. In this work, multiple models are
built and tested to determine the most suitable model for each device and
preprocessing method.

3.3.1. Images models

Batches of three images (captured in a one-second window) are processed
from three different perspectives. The input captures both spatial informa-
tion (e.g., the person, the background, and location) and temporal relations
(e.g., the movement of the person across images).

One model tested is the CNN, which is particularly adept at capturing
spatial relationships in images, thanks to its convolutional layers that can
automatically extract features. When processing images from multiple per-
spectives, we found it more effective to handle each image separately in dif-
ferent convolutional branches (see Figure 3) [52]. Thus, in one configuration,
the NN input consists of three separate image batches.

Since the input images also contain temporal information, we process im-
age sequences (three images) to detect falls. Recurrent NNs, particularly
those incorporating LSTM units [53], are well-suited for temporal data pro-
cessing. However, these networks cannot directly handle raw images, so we
propose combining them with convolutional layers that first extract spatial
features.

Additionally, OF information can be incorporated into these systems.
Each OF field is processed independently using the same convolutional ar-
chitecture applied to the thermal images. Finally, before inputting the data
into the ML model (CNN or ConvLSTM), the feature maps generated by
the (block of) convolutional layers applied to OF fields are multiplied by the
feature maps from the convolutional layers applied to the thermal images.
This process merges the data from different branches (thermal images, OF,
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Figure 3: Architecture of the proposed model. The input data (the thermal images, the
OF fields, and the IMU signals) are depicted at the top, and the output (the classification
of the scene) is at the bottom of the figure. This is the complete model that shows all the
possible operations/configurations that we have implemented (notice that some modules
have been described in a compacted form). The Table 5 shows the performance of some
ablation configurations of this model.

and IMU signals) in a “Fusion” module (see Figure 3), which is then passed
to the classifier’s final layers.

3.3.2. IMU models

For processing IMU data, we propose using a CNN with 1D convolutions,
rather than 2D, to independently extract patterns from each sensor’s coor-
dinates, searching for common patterns across different axes. Additionally,
recurrent NNs, particularly those with LSTM units, are a good fit for this
type of temporal data, though fully connected layers can also be used at the
cost of higher memory consumption.

We also propose combining the IMU data with the architectures used for
processing thermal images (and OF). The IMU data serve as an additional
input, and the extracted information is fused with the network branches
processing the images.

All of the proposed architectures are illustrated in Figure 3.
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Figure 4: Alert System. After the detection of a fall, the system establishes a conversation
with the users to determine the severity of the fall. If the user is OK and can recover by
him/herself, the alarm system aborts sending an alarm message. Otherwise, the alarm
system sends a message to the person in charge.

3.4. Alert system

The proposed system not only focuses on detecting the stages (Normal,
Falling, Fallen, or Recovering) using signals from thermal cameras and wear-
able devices but also includes an alert mechanism that assesses the user’s
condition if abnormal behavior is detected. When a sequence of time win-
dows (containing merged signals) is classified as abnormal (Falling, Fallen,
or Recovering), the alert system is automatically triggered. It begins by as-
sessing the user’s state through questions delivered via an Alexa skill. If the
user is conscious and has recovered, no alarm is sent. However, if there is
no response or the responses are incoherent, an alarm is activated. In such
cases, the system offers the user the option to interact with an LLM, which
provides valuable advice on managing or recovering from the fall. A data
flow diagram of the alert system is shown in Figure 4.

The main component of the alert system is the Alexa skill, with the back-
end distributed between Amazon’s infrastructure and a local computer. The
interaction between Alexa and the user is split into two parts: (1) an initial
interview with predefined static questions to assess the user’s consciousness,
and (2) a conversation with an LLM-based language model, such as GPT
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(Generative Pre-trained Transformer) or the Ollama framework.
When a fall is detected over several consecutive time windows, the Sonos

speaker triggers the Alexa skill by saying, “Alexa, open the fall interview”.
Alexa then begins with: “Hello, I have detected that you have fallen. Are
you okay?” If the user responds affirmatively, Alexa proceeds with questions
to verify their consciousness, such as: “What is the name of the person who
lives in this house?” or “What month is your birthday?”

If the user correctly answers these questions, the alarm is not raised.
Otherwise, a help alert is sent via Telegram, and a new interview is conducted
with questions aimed at assessing the severity of the fall. These questions
include: “What part of your body did you hit?” “Are you bleeding?” “Do
you have a headache?” “Are you feeling dizzy?”

At this stage, the user can request advice from the LLM. The model
is designed to provide concise responses (less than 50 words). To tailor the
advice, the system integrates context from the user’s responses to the Alexa
interview. For example, if the user says, “I have fallen and hit my head on
the floor” or “I see blood on my head but have no headache” the LLM incor-
porates these details into its response. Furthermore, the model is instructed
to behave like a healthcare professional and includes recommendations ex-
tracted from literature and medical guides [54, 55], such as: “Remain calm
and assess the situation to determine if there are any serious injuries.”

4. Experimental analysis

In this section, the experimental setup is described first, providing the
reader with a complete understanding of the evaluation phase. Then, an
ablation study analyzing the impact of each component in the system in the
final performance is included. Finally, an analysis of the fall detection results
is carried out.

4.1. Setup

This section defines the experimental setup in order to provide the details
of the experiments and enable their reproducibility. First, the description of
the dataset is assessed, as well as the time-window defined to process the
data in real time. Then, the dataset splitting technique and the metrics used
to measure the results are described. After this, the hyperparameters of the
training phase has been indicated. Finally, the evaluation of the LLM models
is carried out.
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4.1.1. Dataset description

One of the main contributions of this work is the UAL-MFDD dataset,
recorded at the Smart Home of the University of Almeŕıa. It contains data
from 17 actors (12 men and 5 women), each performing a sequence of move-
ments, including 20 simulated falls from three different perspectives. The
falls consist of five different types: fall to the knees, front fall, left lateral fall,
right lateral fall, and backward fall. In total, 340 falls were recorded, with a
combined recording time of approximately 12.2 hours.

4.1.2. Latency

In order to perform the classification of the stages of the falls, a time
window is necessary for analyzing the input data. Larger time windows
generally provide more reliable results but increase the system’s latency. All
the results in this section are based on a 1-second time window, which offers
a good compromise between reliability and latency.

4.1.3. Training configuration and validation metrics

The validation of the proposed system was conducted using a leave-one-
group-out (LOGO) approach [56]. This involves creating separate groups of
actors for training and validation. The dataset was split into three subsets:
training, validation, and test. The training and validation datasets contain
13 actors, while the test dataset includes 4 actors. This approach allows for
evaluating the system’s generalization to unseen users. For the training and
validation datasets, the data was shuffled, with 80% used for training and
20% for validation.

The dataset splits exhibit class imbalance, with the Normal state being
overrepresented and the Fall state underrepresented. Table 2 details the
number and percentage of samples for each class across the different dataset
parts.

To assess the performance of various models, the F1-Score was selected as
the primary evaluation metric, as it computes the harmonic mean between
precision and recall, making it well-suited for imbalanced datasets [57]. The
F1-Score was calculated using the test dataset, which consists of actors not
included in the training or validation sets.

4.1.4. Training parameters

The DL models were trained with a maximum of 500 epochs, applying
early stopping after 50 epochs if no improvement was detected. The batch
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Class Total
Dataset Normal Falling Fallen Recovering samples
Training 50.11 2.30 40.46 7.13 26804
Validation 50.72 2.46 39.79 7.03 6700
Test 52.10 1.63 40.29 5.98 10402
Duration (s) - [1, 2] [15, 20] [5, 8] 43906

Table 2: Class distribution in the training, validation and testing datasets. The minimum
and maximum duration of each state has been also provided (except for the Normal class).
There is a fall every [20, 30] seconds.

size was set to 64, enabling faster training while ensuring each batch con-
tained samples from all classes. The Adam optimizer was used to adjust the
weights, with default parameters as specified in the TensorFlow framework.

4.1.5. Evaluation of LLM models

An LLM has been integrated into the alert system to provide assistance
after detecting a fall. One of the primary challenges faced during the im-
plementation of this feature was the model’s response latency. To address
this issue, we evaluated the average latency of the models available in the
Ollama tool by sending 10 requests to a virtual machine configured with 16
processors, 32 GB of RAM, and 160 GB of disk space. The prompt used
for each request was, “I have fallen and hurt myself, can you give me some
advice?” The evaluation was conducted in two sets: in the first, the default
configuration of each model was used to generate the response; in the second,
a customized configuration was applied, where the model was instructed to
act as a fall care assistant. This customized setup utilized 16 threads, lim-
ited responses to 150 words, and retained a history of the last 10 questions
and answers. Table 3 summarizes the size of the models, their latency for
both default and customized configurations, and the number of characters
generated in their responses.

The results show that the Gemma model achieved the lowest latency (2.82
seconds) in the customized configuration, while still generating responses
with fewer than 150 characters. Gemma [58] is a family of lightweight,
state-of-the-art models developed by Google, based on the same research
and technology as the Gemini models [59].
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Model Size Latency (s) Num. characters
(parameters) GB default/custom default/custom
Llama-3 (70B) 40 Doesn’t respond - / -
Llama-2 (70B) 39 Doesn’t respond - / -
Llama-2 (13B) 7.3 119.10 / 16.24 1467 / 156
Solar (10.7B) 6.1 116.16 / 23.02 1783 / 360
Gemma (7B) 4.8 74.20 / 6.57 1483 / 116
Llama-3 (8B) 4.7 88.10 / 17.56 1970 / 432
Mistral (7B) 4.1 65.47 / 9.77 1425 / 259
Neural Chat (7B) 4.1 75.11 / 9.37 1694 / 211
Starling (7B) 4.1 98.64 / 41.94 2203 / 887
Code Llama (7B) 3.8 77.77 / 23.15 1491 / 758
Llama-2 (7B) 3.8 31.39 / 11.57 685 / 343
LLaVA (7B) 4.5 52.56 / 22.10 1188 / 778
Orca Mini (3B) 1.9 20.40 / 9.08 830 / 396
Phi-2 (2.7B) 1.7 48.47 / 4.15 2215 / 259
Dolphin Phi (2.7B) 1.6 21.52 / 9.21 1079 / 454
Gemma (2B) 1.4 25.68 / 2.82 1460 / 116

Table 3: Comparison of delay between customized configuration and default configuration
in different Ollama models.

4.2. Ablation study

This section explores some key questions: Are all the devices necessary
for fall detection? Which combination of devices is the most effective? While
CNNs excel with image data, LSTM networks should also perform well with
sequences. So, which neural network architecture is best suited for the FD
problem? What image and IMU-signal conditioning techniques are optimal?
To answer these questions and evaluate the system’s performance, an ablation
study was conducted to quantify the impact of various model components,
information sources, and techniques.

4.2.1. Impact of IMU signals

In this study, raw IMU signals were directly input into the model with-
out any preprocessing. The ablation results, shown in Table 4, reveal that
when LSTM is not utilized, using IMU signals from both the smartwatch
and smartphone yields better results. However, when the LSTM module
is included, using only the smartphone data performs better. This may be
because, during a fall, the movement of the trunk (monitored by the smart-
phone) exhibits less variation than the movement of the arms (monitored by
the smartwatch).
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Model Device Test F1-Score

CNN
Smartwatch 0.846
Smartphone 0.858

Both 0.864

LSTM
Smartwatch 0.655
Smartphone 0.780

Both 0.609

Table 4: Impact of the IMU signals on the detection performance.

4.2.2. Impact of the visual inputs

The visual inputs consist of thermal images and OF fields. The following
configurations were evaluated (as shown in Figure 3):

• Raw: The raw (unprocessed) images from individual cameras (Raw/C1,
Raw/C2, Raw/C3), combinations of two cameras (Raw/C1C2, Raw/C1C3,
Raw/C2C3), and all three cameras (Raw/C1C2C3).

• Only-OF: Only OF fields are used as input.

• Raw+OF: Both thermal images and motion detected through OF
fields are considered.

• PCC (Person Cropped and Centered): Similar to Raw, but the
person is cropped and centered against a black background.

• PCC+OF: The same as PCC, but with OF fields included.

The results, shown in Table 5, demonstrate:

1. Multiple perspectives improve fall classification, but the gain is small
(only a 0.2 increase in the F1-Score).

2. The combination of accelerometer and gyroscope data yields results
similar to using only cameras.

3. LSTM is effective when processing data from a single camera (C2).

4. Incorporating OF boosts performance, producing the best results in
five cases (CNN/C3, CNN/C1C2, CNN/C2C3, CNN/C1C2C3, and
CNN+LSTM/IMU+C1C2C3). However, OF alone is insufficient.

5. PCC is not critical (only superior in the PCC+OF/C1C3 case), sug-
gesting that system inference time can be reduced by not using YOLO.
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F1-Score

IMU +
Model Pre-proces. C1 C2 C3 C1C2 C1C3 C2C3 C1C2C3 C1C2C3

CNN

Raw 0.923 0.849 0.929 0.925 0.927 0.930 0.921 0.914
Only-OF 0.790 0.806 0.837 0.868 0.870 0.885 0.877 0.896
Raw+OF 0.904 0.864 0.930 0.932 0.921 0.932 0.950 0.924

PCC 0.891 0.851 0.883 0.918 0.930 0.889 0.904 0.925
PCC+OF 0.897 0.861 0.899 0.923 0.936 0.923 0.922 0.895

Raw 0.896 0.873 0.918 0.930 0.926 0.920 0.921 0.917
CNN Only-OF 0.821 0.804 0.830 0.846 0.231 0.865 0.832 0.879

+ Raw+OF 0.916 0.859 0.904 0.799 0.910 0.824 0.813 0.947
LSTM PCC 0.885 0.839 0.900 0.921 0.920 0.901 0.938 0.921

PCC+OF 0.824 0.873 0.877 0.860 0.678 0.858 0.739 0.916

Table 5: Performance of the different configurations of pre-processing techniques cameras
plus IMU-signals.

Figure 5: Explainability of the inference of the CNN blocks when a fall is recorded by the
cameras. t0, t1 and t2 represent three diferent instant of time, being t0 the first (oldest)
one. The pixels that recognise the correct estate at each column are coloured in green and
the pixels that recognize an incorrect estate are in red.
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ML Algorithm Device SMOTE F1-Score

kNN
Smartwatch No 0.896
Smartphone No 0.871
Both No 0.900

RandomForest
Smartwatch No 0.925
Smartphone No 0.875
Both No 0.931

XGBoosting
Smartwatch No 0.926
Smartphone Yes 0.889
Both No 0.933

GradientBoosting
Smartwatch No 0.904
Smartphone No 0.881
Both Yes 0.916

Table 6: Performance of IMU-based models.

A more detailed analysis of the visual inputs can be conducted using
model explainability techniques [16], which shows how the inference is carried
out. As seen in Figure 5 (the code for reproducing this experiment is available
at GitHub9), the second camera (C2) provides the least information about
the fall. Among cameras 1 (C1) and 3 (C3), C1 captures the fall more clearly
due to its lateral perspective, whereas C3 is frontal. Additionally, the state
recorded at t0 is key for recognizing the class Falling using C1.

4.2.3. Impact of the LSTM network

The model depicted in Figure 3 integrates an LSTM network to capture
temporal correlations in the input signals (cameras and IMU). However, as
shown in Table 5, the LSTM network has a marginal effect on overall perfor-
mance. Despite this, it demonstrates the ability to effectively combine input
signals, delivering near-optimal performance in the Raw+OF configuration.

4.3. IMU-based FD using ML algorithms

Some traditional ML algorithms can effectively classify data with low-
dimensional inputs, such as those generated by wearable devices. This makes
it feasible to apply techniques like k-Nearest Neighbors (kNN) [60], Random
Forest [61], XGBoost [62], and Gradient Boosting [63] to detect falls using
IMU data. The results of these classifiers are presented in Table 6. As shown,

9https://github.com/marcoslupion/lime-multi-input.git where the LIME li-
brary has been modified to work with several input images at the same time.

22

https://github.com/marcoslupion/lime-multi-input.git


Class Precission Recall F1-Score
Normal 0.997 0.972 0.985
Falling 0.401 0.858 0.546
Fallen 0.980 0.919 0.949

Recovering 0.638 0.841 0.725

Table 7: Performance of the classification.

Class Precission Recall F1-Score
Normal 0.997 0.972 0.985

Fall 0.971 0.997 0.984

Table 8: Performance classification when only to different classes are considered.

the performance of these ML models is slightly lower compared to the results
obtained using visual information (as in Table 5). Nonetheless, the results
confirm that wearable devices like smartwatches and smartphones are highly
suitable for fall detection.

4.4. Class analysis

Table 7 presents the precision, recall, and F1-Score metrics for the dif-
ferent fall stages (as detailed in Table 2). It can be observed that the most
underrepresented classes, such as Falling and Recovering, are more challeng-
ing to identify. This is because these transition classes are shorter in duration
(between 1 and 2 seconds) compared to the Normal and Fallen states, which
last at least 5 seconds. Notably, the transition classes (Falling and Recover-
ing) have recall values of 0.858 and 0.841, respectively. This suggests that
the model can recognize these states in around 85% of cases, but there are a
significant number of false positives, as indicated by the lower precision val-
ues. In the literature, false positives are a well-known issue in FD systems,
and in some cases, they hinder the adoption of such systems in real-world
environments.

To address this issue, we combined the Falling, Fallen, and Recovering
classes into a new class labeled “Fall”. The updated results are shown in
Table 8. As seen in the table, the recall for the positive class (Fall) is now
0.997, indicating that the system can recognize almost all instances where
the user is either falling, on the ground, or recovering. This ensures a robust
detection of these states, enabling the system to trigger alerts without missing
critical falls.

Furthermore, the system’s performance can be maximized (i.e., detect all

23



falls without false positives) by only generating an alarm when a sequence of
N consecutive 2-second fall detections is recognized. In our experiments, we
found that setting N > 2 ensures 100% accuracy in fall detection.

To clarify, the test dataset included 80 fall sequences, each lasting between
20 and 30 seconds. In these sequences, the Falling state lasted between 1 and
2 seconds, the Fallen state approximately between 15 and 20 seconds, and
the Recovering state between 5 and 8 seconds. Using binary classification,
the system was able to identify all falls, achieving 100% accuracy. There
were also 81 normal state sequences, all of which were correctly classified.
In only 4 instances, fall states were detected in more than 10% of the time
during normal sequences, but these predictions occurred at non-consecutive
intervals, thus preventing the triggering of false positive alarms.

5. Conclusions and future work

This work analyzed the performance of an smart fall detection and alarm
generation system capable of interacting with the user. Multiple sources of
visual information (infrared cameras) and motion data (accelerometers and
gyroscopes) were utilized. To process this information, a deep learning model
was proposed to analyze these sources directly, along with data provided by
an optical flow estimator. The results of the system’s evaluation using a new
public dataset—comprising 17 actors and more than 340 falls recorded at the
University of Almeŕıa—showed that:

1. The use of infrared information is effective for fall detection, yielding
results comparable to those obtained using visible-spectrum data, pre-
serving the privacy as much as possible.

2. The use of motion data generated by wearable devices also provides
satisfactory results, though slightly lower in performance compared to
visual information.

3. Both sources of information (infrared and inertial) can be combined
using deep learning techniques to create more robust systems.

4. The incorporation of the optical flow as an additional input enhances
performance.

5. The fall detection system can be integrated with an alarm system using
common IoT devices that the user is likely to already have at home.

In future work, the focus will be on fall prediction, which will require
recording datasets in controlled environments. Additionally, all software and
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models will be packaged and deployed as a cloud solution, making them
accessible to researchers.
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