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THPoseLite, a Lightweight Neural Network for
Detecting Pose in Thermal Images

Marcos Lupión, Vicente González-Ruiz, Javier Medina-Quero, Juan F. Sanjuan, Pilar M. Ortigosa.

Abstract—Nowadays, Smart Environments (SEs) enable the
monitoring of people with physical disabilities by incorporating
activity recognition. Thermal cameras are being incorporated as
they preserve privacy. Some Deep Learning (DL) solutions use
the pose of the users because it removes external noise. Although
there are robust DL solutions in the visible spectrum, they fail
in the thermal domain. Thus, we propose THPoseLite (Thermal
Human Pose Lite), a Convolutional Neural Network (CNN) based
on MobileNetV2 that extracts pose from Thermal Images (TIs).
In a novel way, an auto-labeling approach has been developed. It
includes a background removal using an optical flow estimator. It
also integrates Blazepose (a pose estimator for Visible spectrum
images (VSIs)) to obtain the poses in the pre-processed TIs.
Results show that the pre-processing increases the percentage
of detected poses by Blazepose from 19.55% to 76.85%. This
allows the recording of Human Pose Estimation (HPE) datasets in
the visible spectrum without requiring visible spectrum cameras
or manually annotating datasets. Furthermore, THPoseLite has
been embedded in an Internet of Things (IoT) device incorporat-
ing an edge Tensor Processing Unit (TPU) accelerator, which can
process TIs recorded at 9 Frames Per Second (FPS) in real-time
(12.28 FPS). It requires fewer than 6W of energy to run. It has
been achieved using model quantization, decreasing the accuracy
in estimating the poses by only 1%. The MSE of MobileNetV2
in test images is 35.48, obtaining accurate poses in 21% of the
images that Blazepose is not able to detect any pose.

Index Terms—Pose estimation, thermal image, auto-labeling,
edge accelerator, quantization

I. INTRODUCTION

THE progressively aging population is increasing the bud-
get for human resources and infrastructures to deal with

this situation [1]. However, only a small percentage of these
people live independently in their homes without requiring
the services of a caregiver or a retirement home [2]. In this
context, careful home environment monitoring is critical to
prevent serious health problems and risks, especially at older
ages [3], [4]. For this reason, the use of SEs is aimed at solving
several challenges: (1) adaptation to the person’s capacities,
(2) monitoring the person’s health state and activities, and (3)
triggering alarms when abnormal situations occur [5]. This
monitoring process has been called Ambient Assisted Living
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(AAL) [6], where different sensors and devices are used to
accomplish these conditions.

The first devices used in SEs, such as presence and pressure-
on-surface detectors, were binary sensors that provided accept-
able levels of accuracy in activity in a low invasive recognition
way [7]. Later, the sensors were replaced by wearable devices,
such as smartwatches and location tags, which obtained more
accurate data about user movements, position and gestures [8].

The main limitation of wearable devices is the little battery
autonomy [9] and their invasiveness [10]. Because of these
limitations, Visible Spectrum (VS), usually Red, Green and
Blue (RGB) cameras are incorporated into SEs. The captured
images are processed using deep learning algorithms, achiev-
ing state-of-the-art (SOTA) results in tasks such as Activity
Recognition (AR) [11] and fall detection [12]. However, a
drawback of using this type of camera in SEs is that it leads to
privacy issues, being considered as intrusive [13]. A solution
to this is the use of low-resolution thermal cameras, as has
been proposed in several works [14], [15]. These cameras
record single-channel infrared (thermal) images containing
the temperature of the objects and people. These images are
processed similarly to VSI to perform the same types of tasks
with similar accuracy [16], [17], but with the advantage of
preserving people’s privacy.

In DL solutions, the use of the poses of people is being
widely adopted. In general, the abstraction provided by the
use of poses allows the DL solutions: (1) to ignore the
irrelevant features, such as background and person-specific
characteristics, (2) to generalize better, and (3) to be trained
more efficiently [18]. A body pose consists of several key
points (also called landmarks) that indicate the localization
of the joints representing the person’s posture in the image.
Several deep learning solutions that use the person’s poses to
perform fall detection [19] and AR [20] (among other tasks)
have been proposed working in the VS domain.

HPE models in VSIs can obtain poses with a PCKh@0.5
value around 93 [21], [22]. However, their performance is
usually far from good when the VSIs are replaced by thermal
ones (less than 30% pose detection in [23] and 50% using [24]
in several preliminary experiments with TIs). This happens
because such systems were trained only with VSIs. For this
reason, a collection of works specifically developed to work
with TIs has been proposed in literature. They can be classified
into two categories: (1) those that create an annotated dataset
from scratch and re-train the HPE framework with these
images [25], and (2) those that record paired VS and TIs and
set the ground truth of the thermal pose as the pose obtained by
a framework in the VS domain [26], [27]. The main problem of
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the first approach is the high-demanding and error-prone work
required to annotate a dataset. In the second approach, two
cameras are needed, and the captured images must be aligned.
Furthermore, in both cases, the solutions are not available to
the community, and details about their architecture and training
configuration are not provided.

When developing AAL solutions in SEs there are usually
two main requirements [28]. First, the computation of these
must be executed in real-time to react as quickly as possible to
emergency situations such as falls [19], [29]. There exist HPE
solutions in the VS that allow this, however, in the thermal
domain, existing solutions do not run in real-time. Second, the
devices have to run locally [30] to preserve the privacy of the
users. These devices normally have low energy consumption
and reduced prices, enabling the adoption of these in real
environments.

In our work, we propose THPoseLite, a solution to the
problem of HPE in TIs. It includes a novel automatic approach
to labeling TIs, removing human error and the need for several
devices. These are pre-processed, and a visible spectrum pose
estimator is used to label them. Furthermore, a lightweight
Neural Network (NN) is incorporated, building the first real-
time HPE pose estimator using TIs in an IoT device. In the
experimentation, we compare different pre-processing steps
and NN architectures in a dataset recorded at the University of
Almerı́a. Furthermore, the execution of THPoseLite is assessed
in the IoT device, analyzing HPE accuracy, inference speed
and energy consumption.

Summarizing, the main contributions of this work are:
1) to design and evaluate the performance of a lightweight

deep NN, THPoseLite, which obtains poses from TIs.
2) the auto-labeling images (obtained with a FLIR Lepton

3.5 camera) that are pre-processed using Blazepose [23]
(a pose estimator in VS RGB images).

3) the incorporation of a TPU accelerator, which provides
a real-time inference of poses.

4) a dataset recorded in the Smart Home of the University
of Almerı́a has been created. It contains 40481 Portable
Network Graphics (PNG) TIs from 6 users, recorded
from two different angles.

The remainder of this article provides a detailed description
of the proposed approach. In Section II, a review of related
works and the state of the art of HPE frameworks on VS and
TIs is presented. Section III presents the proposed framework
and the EC device on which it is deployed. Section IV shows
the evaluation of the method. Finally, Section V lists the main
findings and possible future works.

II. RELATED WORKS

The incorporation of low-resolution thermal vision sensors
in SEs is not usually found in real environments [31]. This is
mainly due to the lack of public datasets and robust solutions.
Visible spectrum solutions benefit from pre-trained models
allowing the creation of robust and customized solutions to
most of the problems [32]. Another negative point of TIs
is the cost of the cameras [31], being higher than that of
visible spectrum cameras [33]. However, the main benefit of

thermal cameras is privacy preservation, as thermal, not light
information is captured in the image. Thus, the lower the
resolution, the higher the privacy preservation [31], [33]. VSIs
are found to be intrusive [34]. Another good point about TIs
is the ability to record images in no light conditions [26],
allowing AAL solutions to work even in these cases.

In this work, the problem of HPE in TIs is addressed.
In HPE, DL solutions have arrived to outperform traditional
methods. Poses inferred from the user can have 2 Dimensional
(2D) or 3 Dimensional (3D) coordinates. Solutions obtaining
2D coordinates are more accurate because it is easier to
create large annotated datasets. 3D HPE is more challenging,
collecting datasets in controlled lab environments, and facing
the problem of occlusions.

In the VSs, there is a large number of solutions in literature,
making it difficult to set a SOTA solution because there is
no clear and fair comparison between them [22]. These have
been mainly classified as top-down, and bottom-up [21]. On
the one hand, the top-down approach first detects the person
and obtains the landmarks on it; therefore, the running time
depends on the number of people in the image. In this case,
the poses are detected only if the people are detected. On the
other hand, the bottom-up approach first locates the different
landmarks in the image and then tries to “build” the pose(s)
of one or more people in it. The main problem with this
alternative is the difficulty of incorporating new types of
landmarks. Moreover, the larger the number of landmarks the
model can detect, the greater the running time required.

Among the bottom-up solutions, OpenPose [24] stands out
because it was the first real-time multi-person system to jointly
detect the human body, hand, facial, and foot landmarks (up to
a total of 135) per image. OpenPose is based on a fine-tuned
VGG-19 deep NN [35] that obtains the part affinity fields
in the image, and then a greedy algorithm tries to link the
different joints of the people. This approach outperforms other
solutions such as Mask R-CNN [36] and Alpha-Pose [37],
which follow a top-down approach. As for the inference time,
the OpenPose framework has an FPS lower than 1 in the
MPII [38] and COCO datasets [39] when it is run on an
Intel i7 processor. OpenPose and Alpha-Pose are open-source
solutions, providing pre-trained models together with software
that users can use to detect poses in their images.

Another solution is BlazePose [23], which obtains 3D land-
marks of a single person. BlazePose first detects the person
using a lightweight face-detector NN based on the Vitruvian
Man, and then, the landmarks are identified by another NN .
BlazePose has been designed to be fast, achieving real-time
performance on mobile terminals. This solution was trained
on a fitness dataset [40], [41] that is not publicly available.

The vast majority of pose estimators developed to date work
with RGB images taken in the VS. There exist no large and
well-annotated available datasets containing single and multi-
person images with annotated poses in TIs. Therefore, there
is no SOTA solution in the thermal domain.

In order to overcome this, the first approach is using
HPE solutions in the VS domain to label paired TIs. For
example, ThermalPose [26] annotates TIs extracting features
from OpenPose. A camera recording aligned thermal and
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VSIs are required to record the images. Openpose extracts the
landmarks in the VS image, and due to the alignment between
images, the landmarks are the same in both images. Results
show an encouraging performance outperforming VS pose es-
timators in dark environments. The same idea is implemented
in [27]. In this work, VSIs and TIs are captured by different
cameras, and a residual network is used to infer the landmarks.
In [42], the authors propose a transfer learning approach to
obtain face points in TIs from two paired thermal and VS
annotated datasets. An in-bed HPE is built in work [43]. It
proposes a self-supervised framework using an autoencoder
trained with paired VS and TIs.

Alternatively, the second approach is the manual annotation
of datasets. For example, the authors in [25] create a new
dataset, developing an annotation tool based on a previous
object detection tool. In [44], a new dataset is created using
a 3D motion capture system in a controlled lab environment,
together with reflective markers attached individually on 21
joints. It uses Openpose to extract 2D parameters.

These solutions have some drawbacks: i) the need for two
cameras in the first approach, which can be costly, ii) the
time-consuming task of annotating images in [25], and iii)
the time-consuming and costly process in [44]. A common
problem is the creation of small datasets not covering a wide
variety of poses and people, building non-robust solutions. In
addition, there are no clear evaluation metrics in the case of
TI solutions, as there is no standard well-annotated dataset to
use as a reference.

Regarding the computational hardware used to obtain those
poses, in some works, such as in [45] and [46], the images
are obtained by fixed cameras and sent to the cloud, where
they are processed to obtain a pose. Using cloud resources,
the elapsed time between the image capture and the HPE is
high. Furthermore, these approaches send personal data out
of the SE, and sensitive data can be exposed. Although some
HPE solutions in the visible spectrum are able to obtain poses
in real-time [23], none of the analyzed solutions in the thermal
domain do. This is a key point when developing AAL solutions
in SEs.

summarizing, visible spectrum solutions cannot be used as
a solution to HPE on TIs since datasets used to train do
not contain TIs so their performance in the VS is deficient.
For this reason, some domain-specific solutions were created
manually annotating datasets, or using visible spectrum solu-
tions to annotate paired visible and thermal spectrum images.
Nevertheless, these are time-consuming, costly, and not able to
run in real-time using IoT and low energy-consuming devices.

III. METHODOLOGY

This section describes the proposed solution (THPoseLite)
to the problem of HPE on TIs. First, the IoT device used to
perform the HPE in the real environment is described. Second,
BlazePose is introduced. Third, the steps to build THPoseLite
are described. Fourth, the theoretical basis and algorithms
implemented in the pre-processing step of TIs are described.
Finally, the NN architecture incorporated into THPoseLite is
exposed and analyzed.

Fig. 1: Location of the IoT device and its components.

A. Embedded IoT Device

To overcome the drawback of using an external computer
and sending the data outside sensitive environments, we
present an EC system based on the IoT device developed under
an Edge Computing approach in [47] that processes the images
captured by an embedded camera and estimates the poses by
running an NN in an accelerator. Thus, this device acts as a
whole and can be installed anywhere. The total cost of the
system is approximately e450. The main components of the
IoT device are the following:

• A Raspberry Pi (RPi) 4: A well-known System on Chip
is used in many IoT projects due to its low cost and
communication capabilities. The processor is an ARM
Cortex-172, with four cores working at 1.5 GHz. The
RAM size is 4 GB. The price is roughly e40.

• A PureThermal 2 Smart I/O Module + FLIR Lepton
3.5:. With a price of e350, this device is an LWIR
(Long-Wavelength Infra-Red) camera with radiometric
capability, and it is smaller than a coin. This camera
mounts a 160 x 120 active pixel focal plane array that
captures the temperature of every pixel in the image. It
has been integrated with the PureThermal 2 Smart I/O
Module, a USB thermal webcam for the FLIR Lepton
thermal imaging camera core. The PureThermal module
has been pre-configured to work as a plug-and-play USB
thermal webcam and integrated into an RPi through USB.

• A USB Accelerator from Coral.AI: This accelerator1

incorporates an onboard TPU co-processor. Coral.AI can
compute up to 4 trillion integer operations per second,
using a small quantity of energy (less than 900 mA), and
allows the user to significantly reduce the inference time
of the NN compared to running it in the RPi 4. It costs
approximately e60.

B. BlazePose

BlazePose is a lightweight (runs in real-time in current
mobile devices) CNN that produces 33 2D body landmarks
extracted from an RGB image of a person [48], [49]. It has
been trained to find the pose in VSIs. Four values define each

1https://coral.ai/products/accelerator
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landmark. Three of them are the 3D coordinates which locate
it in the 3D space, and the fourth is a level of visibility which
specifies the degree of visibility of the landmark in the image.

Unfortunately, BlazePose incorporates a face detector to
segment the person [50], and if the face is not detected, it
fails to estimate the pose. In our case, where the input images
are thermal, the BlazePose network cannot detect the pose
in most of the images because the face detector was not
trained with TIs. However, there are cases where the pose
is correctly obtained, and this knowledge can be transferred
to a new NN to detect poses in images from the thermal
domain. We use the set of detected poses to train our proposal,
THPoseLite. Another problem we must face is that the images
taken by the FLIR Lepton 3.5 camera have a low resolution
and, depending on the camera’s distance from the person, it is
difficult to appreciate details such as the person’s mouth, eyes,
and expression. For these reasons, among the 33 landmarks
given by BlazePose, the facial ones are removed from our
system, resulting in 22 body landmarks.

C. THPoseLite

THPoseLite (our proposal, see Figure 2) has been imple-
mented in a sequence of stages:

1) Generation of the dataset: a set sequence of inhabitants
performing poses in the Smart Home of the University
of Almerı́a was recorded using the thermal camera. The
details about the location and number of people can be
found in Section IV-A.

2) Pre-processing: the TIs are pre-processed to: (1) remove
the background, (2) extract the person from the image,
and (3) center and scale it.

3) Generation of the datasets using BlazePose: hereafter,
BlazePose processes the images and estimates the body
poses. The images that contain the pose build the train
and validation dataset. Those images where a body pose
is not recognized are incorporated into a “No pose”
dataset.

4) Training of THPoseLite: finally, THPoseLite is built in
32-bit floating-point precision format and trained using
a training dataset. In addition, THPoseLite’s model is
quantized to integers of 8 bits and deployed in the
Coral.AI accelerator to speed up the inference time of
the poses using the IoT device.

D. Thermal Images pre-processing

The TIs are pre-processed to maximize the pose detection
ratio success of BlazePose. This pre-processing consists of the
following stages:

1) A reduction of the intensity of the background pixels of
the images, considering that the background is formed
by those areas of the images that experiment a motion
estimation below a threshold.

2) After this, the background-attenuated images are bina-
rized, resulting in a segmentation where each pixel of
the image is classified as background or foreground (the
person) (see Figure 4).

3) Finally, the person is located in the binarized image,
where “noise”2 is removed eliminating high-temperature
areas in the background, and the person is centered in
the image (see the Figure 5).

The main processing aspects are detailed below.
The images collected in our dataset show people in an

environment with a wide variety of poses and fore-shortenings,
time-varying temperatures, and different camera angles. As
a result, the images integrate additional content in each
sequence, allowing that the image’s background can greatly
impact the detection of a human pose.

In order to distinguish between foreground and background
pixels (see Figure 3), we rely on the fact that the camera is
static. Therefore, most of the background pixels (x, y) in the
i-th image, Si, are also located at the coordinates (x, y) in
the next Si+1 image. For this reason, we have estimated the
motion at the pixel level (resulting in one motion vector3 per
pixel) between consecutive images using the Farnebäck dense
optical flow estimator [51] provided by OpenCV4.

The algorithm for attenuating the energy of the background
in the images has been described in Figure 3. In this algorithm,
the variable i (in Step 1) represents the index of the i-th image
captured by the camera, and B (Step 2) is the background im-
age, which initially is equal to the image S0. Then, iteratively,
while the camera is capturing images (Step 3), we compute
the background-attenuated image E, by subtracting B from
the next image in the input sequence (Step 3.(a)). The optical
flow is computed and stored in the dense motion field M (Step
3.(b)). The classification between background and foreground
pixels is stored in G, where the foreground pixels are set to
zero and the background pixels are copied from Si+1 (Step
3.(c)). Notice that the foreground is set to zero in order to
avoid subtracting them in Step 3.(a). The background image
G is updated with the information provided by G, using a
weighted moving average G (Step 3.(d)).

The result of the previous processing is an enhanced image
sequence E, whose pose detection success ratio is higher,
where the intensities of the background pixels are decreased
(see Figure 4). Notice that this technique works in real-
time conditions when the background objects change their
temperature smoothly and are quite resilient to fast-moving
foregrounds (usually people), as long as the motion estimator
has been properly configured. This implies that a large enough
search area size is required, in the case of Farnebäck estimator,
which is controlled by the number of levels l of the Gaussian
pyramid and the window size w. In our estimator, both
parameters remain constant over time, being l = 2 and s = 16.

In addition, it was appreciated that images containing a
person-centered image led to increased performance in HPE
using Blazepose. To locate the person in the image, input
images are “binarized” (only two colors, black and white,
are used). To compute the binary sequence B, we have used
Otsu’s method [52], applied image-wise (see Figure 4). Next,

2From the training process perspective, that visual information that does
not correspond to the person is considered noise.

3With sub-pixel accuracy (motion vector coordinates can indicate displace-
ments smaller than the pixel size).

4https://opencv.org

https://opencv.org
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Fig. 2: Auto-Training of THPoseLite.

attenuate_background(S, l = 2, w = 16, α = 0.99) :

1) i← 0
2) B← Si

3) Loop forever:
a) Output Ei ← Si+1 −B
b) M← Farnebäck(Si,Si+1, l, w)

c) G(x,y) ←

{
S
(x,y)
i+1 , if |M(x,y)| < 1

0, otherwise
d) B← αB+ (1− α)G
e) i← i+ 1

Fig. 3: Procedure for decreasing the energy of the background
in TIs.

a process to detect and center the person in the image was
developed as depicted in Figure 5.

Small areas containing isolated points having an area below
a threshold are eliminated as they contain some noise produced
in the attenuation and binarization steps. Hereafter, areas
having a medium size that are far from the big blobs (anything
that is considered a large object or anything bright in a dark
background, in this case, a person) are also eliminated. Those
medium-sized areas close to the blobs can be parts of the
person’s body (such as the legs), so they are kept when their
Euclidean distance is below a threshold.

Once the “noise” generated by the small and medium-sized
areas has been removed, the blob is cropped from the image
and centered in it. In our TIs, as there are different locations
and perspectives, the people recorded have different sizes in
each sequence. To generalize better and to detect more poses,
these people are cropped from the original image, scaled, and
situated in the center of the image. By doing this, all images
have the same format, and Blazepose increases the success
ratio R.

After the person-center processing, the original pixels in-
volving the person in the image are incorporated into the

Fig. 4: First stage of pre-processing: Image segmentation.

Fig. 5: Second stage of pre-processing: Person location and
centering.

person’s blob. This key process enables Blazepose to extract
features from the person and to better identify the landmarks
of the body parts. In addition, the color of the background is
set to black to better highlight the person in the scene.

Figure 6 shows the attenuation of the background and
the centering of the person in the image, and the different
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Fig. 6: Bathroom images with windows open.

backgrounds in the TIs can be appreciated. The camera’s
position was the same but rotated, and the perspective changed
accordingly.

E. Neural network architecture

THPoseLite consists of an NN trained to detect poses in
TIs. CNNs achieve SOTA results in some computer vision
problems. Therefore, THPoseLite follows the structure of a
CNN consisting of two main parts: the convolutional part and
the classifier. The first part extracts spatial information from
images and results in an embedded layer. This layer contains
the information which allows the classifier to represent the key
patterns of input images. In most cases, the classifier ends
with a fully connected layer that maps the embedded layer
to the NN ’s output. In our problem, the NN ’s output is
not a classification of the input images in different classes. It
consists of a regression problem where the coordinates and
visibility of each of the key points of the person in the image
have to be obtained.

In this work, the selected convolutional model is the Mo-
bileNetV2 NN . MobileNetV2 was designed to achieve SOTA
imagery segmentation and object detection when executed
on mobile devices. To fit in these, it has a reduced number
of parameters. This NN incorporates point-wise and depth-
wise convolutions that enable light filtering, reducing by a
factor of 8 to 9 the time to execute the convolution operation.
In addition, inverted residual blocks are added (bottlenecks).
These blocks take as input a low-dimensional compressed
representation which is first expanded to a higher dimension
and then filtered with a depth-wise convolution, which allows
us to keep the latent information from low layers until the end.
We have incorporated MobileNetV2 into THPoseLite because
it is a lightweight NN that runs on devices with low computing
capabilities, such as the RPi .

The NN ’s output is represented as a vector of 66 values
representing the body pose. This consists of 22 landmarks,
which save information about the user’s joints. Each landmark
is composed of three values: (1) the X coordinate, (2) the Y
coordinate, and (3) the visibility of joint 7. Therefore, the
second part of THPoseLite has to map the output of the
convolutional part to 66 real values. Three fully convolutional

Fig. 7: Landmarks and mapping with the output layer of
THPoseLite.

layers used in regression problems with 2048, 512, and 128
neurons, respectively are used for this task. It is important to
remark that dropout layers have been incorporated between
fully connected layers to prevent the NN from suffering over-
fitting.

In literature, MobileNetV2 has been trained with well-
known VS image datasets (such as ImageNet). In deep learning
solutions, it is very common to use pre-trained models to
generalize better and speed up the training. This is known as
transfer learning. However, after preliminary experimentation,
transfer learning did not enhance the training of THPoseLite
because of the different characteristics of the source domain
of the images. Thus, training from scratch was required.

To sum up, Figure 8 shows the architecture of THPoseLite.
Note that “Conv” represents a convolutional layer and “FC” a
fully convolutional layer. The first part of the NN contains
the MobileNetV2 architecture, incorporating convolutional
layers together with bottleneck blocks (incorporating depth-
wise convolutional layers). The output of this architecture is
an embedding consisting of the most descriptive information
from the image. After this, a fully connected regressor is
incorporated, mapping the embedding from the MobileNetV2
architecture to the output layer.

IV. RESULTS

This section includes the validation of the proposed HPE
approach. First, the datasets and the configuration of the NN
trainings are described. Second, the pre-processing techniques
are compared in terms of MSE and MDE in order to set a con-
figuration as the baseline for the rest of the experiments. Third,
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Fig. 8: Architecture of THPoseLite.

Device Used Flir Lepton 3
Image dimensions 160× 120
Number of images 40 481
Number of people 6
Number of locations 2

Conditions Temperature: 20-25 ºC
Morning-Afternoon

TABLE I: Dataset description.

three NN architectures are compared and the HPE results are
presented in the proposed datasets. Finally, the resulting NN
architecture is assessed in the IoT device, providing insights
about the accuracy, inference speed, and energy consumption.

A. Dataset and training configuration

Before recording a custom dataset for collecting poses in
a thermal domain, a literature review was conducted to look
for datasets involving HPE in TIs. However, because we could
not find such works or datasets, it was necessary to create a
custom dataset to train and validate the proposed approach.
Table I shows the main features of the created dataset.

The dataset was collected in the Smart Home of the Univer-
sity of Almerı́a using two cameras located in the bathroom to
record images from different perspectives. One camera was
placed in front of the WC and the shower, and the other
recording the hall. This was done because the inclusion of
images from two different orientations helps to reduce the
overfitting of the THPoseLite to a given background and
environment. A total of 6 users were recorded in the dataset:
two women and four men, with a height between 1.60 and
1.93 meters. In the recording set, users were instructed to
behave normally but incorporate sudden movements such as
raising their hands and legs, sitting on the WC, and squatting.
Five users recorded at least two sequences of images with
the first camera, and a long sequence involving all the users
was recorded with the second camera. In the first perspective,
windows were opened and closed to increase variability.

A total of 17 sequences (40481 images) were recorded.
Sixteen were used to train and validate the proposed approach,
and the remaining one was used to test it with unseen data.
Sequences used to create the training and validation dataset
were shuffled and split, where 70% of the images were
incorporated in the training dataset and 30% of the images
in the validation dataset.

In addition, several data augmentation techniques were ap-
plied in the training and validation dataset. The data augmenta-
tion factor was set to 2 in training and validation datasets. The
data augmentation techniques were: (1) cropping, (2) rotating
a random angle, and (3) flipping the image horizontally. In

addition, before feeding THPoseLite with the training images,
pixel values were scaled to the [0, 1] range.

Summarizing, the datasets involved in this section are:
• Training (60738 images): This dataset contains the im-

ages and poses used to train THPoseLite. Two new
images are obtained from each original image using data
augmentation techniques to increase the variability in the
dataset and to avoid overfitting. This data augmentation
is necessary to increase the amount of data easily, as
recording and annotating new data is difficult (each image
hast 11 key points) and time-consuming.

• Validation (26034 images): This dataset contains the
images and poses unseen in the training process to
validate the model at the end of each epoch. It is very
important that THPoseLite does not learn from these data
in the training process. However, when the THPoseLite
starts performing badly on this dataset, it shows that it is
beginning to overfit the training dataset, so the training
has to be stopped. In this work, data augmentation tech-
niques were also incorporated into the validation dataset,
having the same scaling factor as the training dataset.

• Test (2159 images): This dataset contains images and
poses used to evaluate the THPoseLite with different
images from those used in training and validation. As
validation images are potentially similar to those incorpo-
rated in training, it is necessary to evaluate THPoseLite in
a different domain. This case used a sequence containing
2151 images as a test dataset.

• No pose (9375 images): The auto-labeling tool analyzed
all initial images to extract human poses in them and used
this as the ground truth of each image. However, no pose
was obtained in all images. Thus a set of images remained
without having a ground truth pose. These images are not
part of the training, validation, and test dataset but are
incorporated into a new dataset. This dataset contains the
poses where the original framework (BlazePose) could
not detect any pose.

As for the training process, the TensorFlow Framework was
used to implement the model and configure the training. The
parameter configuration was the following:

1) The Adam optimizer was used, with a learning rate of
0.001.

2) The loss function considered was the Mean Squared
Error (MSE).

3) The batch size was set to 16 images to speed up the
training.

4) Finally, the total number of epochs needed to train
THPoseLite was not fixed. As stopping criteria, when
the MSE on the validation data does not improve the
previous value after 30 epochs, the best parameters
are stored in the system, and the training is finished.
Therefore, the training process was unsupervised, and
the number of epochs was adapted depending on the
minimization of the MSE.

5) To speed up the training, the multi-GPU approach de-
scribed in [53] was incorporated.

THPoseLite has been trained in an NVIDIA Tesla V100
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Fig. 9: Image pre-processing alternatives.

GPU using CUDA 11.0.2, hosted by a cluster node running
CentOS 8.2 (OpenHPC 2), with 512 GB of DDR4 (3200
MHz) RAM, located at the University of Almerı́a. However,
notice that THPoseLite infers running in a Coral.AI accelerator
attached to the RPi 4.

B. Pre-processing configurations

In this work, the pre-processing of the TIs was necessary
to obtain poses using BlazePose. In the experimentation, six
different types of images were compared to determine which
type is better established as the input to BlazePose. These
alternatives were:

• Original thermal: The raw thermal data which compose
the image from the IoT device.

• Attenuated: Images having the background removed
using the optical flow and the background recalculation.

• Binarized: Binary images obtained with the Otsu method
applied to the attenuated images. The background is
displayed in white, and the person is in black.

• Binarized Centered: Binary images containing the per-
son in the center on it.

• Attenuated Centered White Background: Images con-
taining the person-centered on it but keeping the raw
value of the pixels which define the person. The back-
ground is white.

• Attenuated Centered Black Background: Images con-
taining the person-centered, but keeping the original value
of the pixels which define the person. The background is
black.

The six different configurations are shown in Figure 9.
As shown in Figure 9, the accuracy of the poses varies in
the different configurations. Consequently, to choose the best
alternative, they cannot only be evaluated using the number
of images that produce a pose in BlazePose but also by
considering the accuracy of the pose. For this reason, the
error between configurations and ground truth is calculated.
To measure the error, two metrics are calculated: (1) the MSE
(Equation 1) and the Mean Distance Error (MDE) (Equation 2)
between key points. MSE is incorporated because it considers
each landmark’s visibility value. MDE does not consider the

Image Type Poses from total MSE MDE
Thermal 6,759 (19.55%) 32.16 5.04
Binarized 26,942 (66.55%) 140.82 14.01
Attenuated 15,025 (37.11%) - -

TABLE II: Blazepose’s pose recognition with image pre-
processing without centering the person.

Image Type Poses from total MSE MDE
Binarized 27,921 (68.26%) 89.01 10.47
Attenuated 24,592 (60.73%) 42.15 6.18
Attenuated - Black Back. 31,083 (76.85%) - -

TABLE III: BlazePose’s pose recognition with image pre-
processing centering the person.

visibility value but compares the location of the 22 landmarks
in terms of pixels.

MSE =
1

n

n∑
i=1

(xi − x̂i)
2 (1)

MDE =
1

n

n∑
i=1

√
(xi − x̂i)

2
+ (yi − ŷi)

2 (2)

In Table II, the configurations that do not center the
person are compared. As can be seen, the Thermal image
configuration obtains fewer poses (only in 19.55% of the
images is a pose obtained), so the creation of a dataset
only with these images would require a greater number of
images. Comparing Binarized and Attenuated configurations,
attenuated images allow obtaining more poses and lower error.
The main difference between Binarized and Attenuated is that
attenuated images keep information about joints that binary
remove. This information helps the pose estimator to locate
the joints better.

In addition to the experiment in the current dataset, the pre-
processing approaches were compared using the dataset of the
work [27]. This work uses paired visible and thermal spectrum
images, so the ground truth landmarks on the visible spectrum
are available. In [27], BlazePose obtained pose in 25% of the
TIs, while the attenuated version obtained pose in 32.9% of the
cases. Furthermore, the accuracy of the landmarks given by the
thermal and attenuated images was compared to the landmarks
in the visible spectrum. Results indicate that the Root Mean
Squared Error (RMSE) of TIs concerning the thermal images
is 5.47, while the error using attenuated is 5.28. Therefore,
the use of poses obtained in the attenuated version is more
accurate than the pose obtained using thermal images.

Table III compares the configurations that center the person.
The configuration obtaining more poses is Attenuated with a
black background (76.85%). Furthermore, it is the configu-
ration getting more accurate poses. Binarized and Attenuated
with white background configurations obtain more than 60%
of poses, outperforming the configurations shown in Table II,
not centering the person in the image. Here, the same conclu-
sion can be extracted: Attenuated configuration obtains better
poses than Binarized.

Finally, we highlight the performance improvement in that
images with black backgrounds and centered person process-
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ing allow BlazePose to increase the recognition rate. Thus,
THPoseLite’s input images have this configuration.

C. Human Pose estimation

THPoseLite incorporates MobileNetV2 as the convolutional
part. However, two other architectures were also compared:

• ResNet50 [54]: This NN was proposed to minimize the
vanishing gradient problem in very deep NNs. This was
achieved by incorporating skipping connections between
layers. It contains 50 layers, including convolutional,
batch normalization, max, and average pooling. These
layers are grouped in residual blocks. These blocks are
composed of two sets of convolutional, batch normaliza-
tion, and Rectified Linear Unit (ReLU) layers with a skip
connection between the input and the output. Our work
incorporates a dropout layer after each residual block to
avoid overfitting. This practice is very common in big
NNs . Preliminary experimentation confirms the use of
dropout in THPoseLite. It is appropriate to incorporate
ResNet50 in this case because, due to its depth, features
from the TIs can be captured better, enhancing the key
points estimation.

• U-NET [55]: This NN was proposed to perform image
segmentation tasks. It comprises an encoder and a de-
coder architecture using convolutional and batch normal-
ization layers. Between the encoder and decoder, there
is a latent space that contains the essential information
of the input images to perform the segmentation. In
addition, between the encoder and decoder layers, there
exist skipping connections. These connections bypass one
or more layers of the network and connect the network’s
input directly to the output. This allows the network to
retain information from the input in the output image.
Therefore, the output image can maintain the structural
information of the input image, helping to predict the
location of the key points and their visibility.

The three convolutional architectures compared: Mo-
bileNetV2, ResNet50 and U-NET, are applied in many com-
puter vision works. In our problem, they were selected be-
cause, a priori, they could lead to good results.

The proposed convolutional architectures were evaluated
with the validation and test datasets. Table IV shows the error
from the ground truth regarding the MSE. In addition, the
inference time in the IoT device and the number of parameters
are displayed.

On the one hand, MobileNetV2 and ResNet50 have similar
performance over the validation and test datasets. On the
other hand, UNET behaves poorly in the validation dataset
but improves in the test dataset. For both datasets, it is the
worst NN.

In terms of inference time in the IoT device, MobileNetV2
outperforms ResNet50 and UNET because it was developed
to be run on mobile devices and requires limited computing
resources. It is also important to remark that MobileNetV2
has performed better than ResNet50 and UNET, having only
10.18% of the parameters of ResNet50 and 4.94% of the

N. Network Val. Test Inf. Time (ms) Num. Parameters
MobileNetV2 37.96 36.57 74.8 4,138,626

ResNet50 39.08 35,36 483.8 40,625,934
UNET 53.60 40.78 664.8 83,722,691

Blazepose - - 815 -

TABLE IV: Comparison of the proposed NNs

Fig. 10: Pose Estimation on validation dataset.

parameters of UNET. This number of parameters allows
MobileNetV2 to have an excellent inference speed.

In addition, MobileNetV2 was compared to the ResNet50
architecture incorporated in the work [27]. MobileNetV2
achieved an RMSE value of 5.02 in the validation dataset,
while ResNet50 had a value of 9.8.

Figure 10 shows the pose estimation of the proposed NNs in
the validation dataset. MobileNetV2 and ResNet50 can infer
the pose of the person correctly. However, UNET cannot.
Analyzing the images in the validation dataset, UNET tends
to generate a pose in the middle of the image, having short
arms close to the body.

Figure 10 shows the pose estimation of the proposed neural
networks in the test dataset. Considering that the test dataset
contains images of a user with a different background and
performing different poses, the results are considered encour-
aging in MobileNetV2 and ResNet50 for this complex and
challenging problem.

Fig. 11: Pose Estimation on test dataset.

Figure 12 shows the pose obtained in images where
Blazepose did not recognize any pose. We note that the
MobileNetV2 neural network is able to infer the pose in the
displayed images. However, ResNet50 can predict a pose, but
the result is incorrect. UNET is not able to predict any pose.

Finally, notice that THPoseLite is evaluated on images in
which BlazePose has not obtained a pose. No reference is
available to decide whether the estimated pose is correct.
Therefore, several external users were asked to validate the
system. The users must assess that the pose identified by
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Fig. 12: Pose Estimation on images where Blazepose does not
obtain pose.

Fig. 13: Pose Estimation on images containing synthetic noise.

THPoseLite describes the user’s posture. From a total of 9,375
images, 1,000 of them were randomly selected.

After evaluation, a correct pose recognition rate of 21%
was obtained concerning the total number of images in which
BlazePose has not obtained a pose. This result was promising,
considering that the training images and poses used to train
are obtained from BlazePose. This result showed room for
improvement, incorporating new postures into the training
dataset.

In the previous experiments, THPoseLite was evaluated with
images containing a single person, achieving high accuracy.
However, in smart environments, there can be some pets or
household appliances that emit heat and therefore, disturb the
TI. In the case of household appliances, they are static so the
pre-processing incorporating the motion estimation removes
these from the image. In the case of pets moving in the scene,
the pre-processing step is not able to remove them from the
image, so THPoseLite can be affected by this fact. In order to
assess the behavior in these cases, some synthetic occlusions
have been incorporated into the test dataset. Figure 13 shows
that THposeLite is able to handle this noise and predict the
pose accurately. However, it can be appreciated that a few
artifacts are introduced in the HPE, for example, when the
noise is not overlapping the person, the pose tends to be
displaced by the noise. This could be removed in future works
by incorporating these synthetic images in the training of
THPoseLite in order to make THPoseLite resistant to external
interferences such as moving objects or adversarial samples.

The source code that implements all the NN architectures
is available at GitHub5. In addition, the trained TensorFlow
models using 32-bit floating-point precision arithmetic, the

5https://github.com/marcoslupion/THPoseLite.

TensorFlow Lite models, and the integer 8-bit quantized ver-
sion are provided in a public Google Drive folder6.

D. Performance on the IoT device

This work develops an NN that obtains poses from users
in the thermal domain. In the experimentation, the model was
built using the convolutional part of Resnet50, MobileNetV2,
and UNET (as indicated in Section III-E). The resulting NNs
differ in terms of HPE and inference time accuracy.

In our work, a non-functional requirement is that an NN
model is incorporated into an IoT device (RPi 4) with low
computational capabilities. On the one hand, smaller NNs will
run more quickly and can process more FPS than NNs with
a high number of parameters. On the other hand, small NNs
tend to be less intelligent and produce worse results, so there
is a trade-off between the speed of inference and accuracy.

Nowadays, the wall-time of TensorFlow NNs in devices
such as RPi can be decreased using neural accelerators that
are optimized to efficiently perform billions of operations
per second, which is required in deep learning models. The
accelerator incorporated in the IoT device uses an NN model
in TensorFlow Lite format. When converting a model from
TensorFlow to the TensorFlowLite format, no loss in precision
is incorporated, as weights are stored in 32-bit floating point
precision. However, the accelerator does not support 32-bit
operations, and the model was required to be quantized in
8 bits. This quantization of the input values, weights, biases,
activation functions, and obviously output values to 8 bits7 has
several advantages:

• The quantized model requires less memory. This allows
it to be running in an Arduino.

• The inference time is reduced by a factor of 4 approxi-
mately. This minmizes the latency of the system.

• The inference can be performed in a dedicated accelera-
tor, such as Coral.AI.

• The battery time (in the case of using it) increases for
the same computational load.

• Compatibility with some accelerator. Some accelerators
perform operations with a low-precision format, such as
integers with 8 bits.

The main drawback generated by the quantization of the
model is the precision loss in the operations and, therefore, in
the final output of the system.

To quantize the model, there are different alternatives:
1) Quantizing after normal training: The NN is trained

using 32-bit precision and then quantized by considering
a validation dataset. The model inputs, outputs, weights,
and biases are quantized, considering their maximum
and minimum values when forwarding the validation
dataset. In this stage, selecting the images to incorporate
into the quantization process is key because the model
is quantized accordingly.

2) Quantization-aware: In this case, the model is trained
from scratch, simulating the quantization in the forward

6https://drive.google.com/drive/folders/1BSizNKKjcjbCyk
uvri4VKW0neZ7fsxE.

7Originally, weights and biases are represented with floats of 32 bits.

https://github.com/marcoslupion/THPoseLite
https://drive.google.com/drive/folders/1BSizNKKjcjbCyk_uvri4VKW0neZ7fsxE
https://drive.google.com/drive/folders/1BSizNKKjcjbCyk_uvri4VKW0neZ7fsxE
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Validation Test Inference Time
Neural Network MSE Precision Loss MSE Precision Loss Quantization (ms) Speed Up

MobileNetV2 39.14 1.18 35.48 1.09 52.2 (19.15 FPS ) 1.43
ResNet50 119.63 80.55 83.14 47.78 516.7 (1.93 FPS ) 0.93

UNET 57.46 3.86 43.11 2.33 228.7 (4.37 FPS ) 2.90

TABLE V: Comparison of the 32-bit precision and quantized NNs in terms of accuracy and inference time.

pass and updating weights using 32-bit precision. The
resulting model is a full-precision model that is supposed
to behave better when quantized. However, after the
model’s training, it is required to be quantized, and
typically, a validation dataset is used to accomplish this
task.

In this work, the first quantization approach was followed due
to its good performance and ease of integration.

1) Pose estimation performance: To measure the loss in
accuracy concerning the 32-bit precision model and the infer-
ence time in the IoT device using the Coral.AI accelerator,
the different NN architectures proposed in Section IV-C were
quantized and executed in the mentioned IoT device. Table V
shows the obtained MSE in the validation and test datasets,
with the loss in accuracy, inference time, and speed-up for the
32-bit precision model.

As can be seen, MobileNetV2 is the architecture having the
best performance after quantization (39.14 and 35.48 MSE
in validation and test datasets). This happens because its
architecture was developed to perform well in mobile devices,
incorporating fewer parameters than more complex NNs. The
quantization process introduces some loss of precision every
time a model parameter has been quantized. Thus, quantizing
fewer parameters will reduce this loss. However, ResNET and
UNET contain more parameters, and their architectures are
deeper. Therefore, although it can be an advantage in terms
of accuracy in complex datasets, quantizing these models
produces a higher performance loss, making them unfeasible
to run in neural accelerators. ResNet has a loss in MSE of 80%
and 47.78% in the validation and test dataset. UNET suffers
aloss in precision of 3.86% in validation and 2.33% in the test
dataset.

Figures 14 and 15 show the performance of the quantized
models in the validation and test datasets. The bad behavior of
ResNet50 can be appreciated, while UNET and MobileNetV2
obtain similar results.

Fig. 14: Comparison between quantized neural networks in
validation dataset.

Figures 16, 17 and 18, show the loss of precision of
MobileNetV2 after quantization. It can be observed that the

Fig. 15: Comparison between quantized neural networks in
test dataset.

difference is not noticeable to the human eye.

Fig. 16: Comparison between TensorFlow Model and Edge
TPU model in the validation dataset.

Fig. 17: Comparison between TensorFlow Model and Edge
TPU model in the test dataset.

2) Inference time: In terms of inference time, the TPU
accelerator allows MobileNetV2 and UNET to outperform the
execution in the CPU. MobileNetV2 has a speed-up of 1.43,
and UNET has a speed-up of 2.9. It is important to remark that
this higher speed-up in the UNET architecture is due to the
higher number of convolutional operations specially designed
to be accelerated in accelerator devices. As for ResNet50,
its inference time is increased using the accelerator. This
difference in time is because the TPU is specially designed to
accelerate Multiply ACcumulate (MAC) operations. Only this
specific operation can be done amazingly fast on a TPU . All
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Fig. 18: Comparison between TensorFlow Model and Edge
TPU model with images that Blazepose is not able to detect
pose.

other operations, like loading weights, subtractions, additions,
or dimension reduction, are time-consuming. For ResNet50,
skip connections between layers are incorporated, performing
addition operations between the input of a block of layers and
its output. Therefore, it is concluded that MobileNetV2 is the
most appropriate architecture to be used in THPoseLite, as it
has the best accuracy when executed in the IoT device and a
higher FPS value.

Finally, the pre-processing stage is evaluated in the target
device. A sequence incorporated in the validation dataset is
executed, and it was found that the average processing time
per image is 29.2 ms. Therefore, the IoT device would need
29.2 ms to pre-process the image and 52.2 ms to execute the
NN model. A total of 81.4 ms is required to process each
image, resulting in 12.28 FPS . Considering that the FPS
produced by the thermal camera is 9, THPoseLite enables real-
time data processing in the proposed IoT device. Furthermore,
THPoseLite has a speed-up of 15.61 compared to Blazepose.

3) Energy consumption: In addition to pose estimation
results and inference time, the energy required by the IoT
device has been measured. Thus, an ablation study was carried
out to determine the role of each step in the pose estimation
inference. A total of 6 configurations were executed:

• Conf. 1: Only capture images with the thermal camera.
• Conf. 2: Pre-Processing TI without running the model.
• Conf. 3: Pre-Processing TI and running the model on the

Raspberry Pi processor.
• Conf. 4: Pre-Processing TI and running the model on

Edge TPU.
• Conf. 5: Running the model on Edge TPU without pre-

processing TI.
• Conf. 6: Running the model on Raspberry Pi processor

without pre-processing TI.
Table VI shows the energy required by each of the con-

figurations. Column Instant Energy shows the mean of the
energy measured at each timestep. Column Total Energy
shows the total energy spent when processing 300 images.
On the one hand, the pre-processing of TI is the least energy-
consuming step. On the other hand, configurations requiring
the execution of the DL model are the most energy-consuming.
The configuration using the Edge TPU device requires more
instant energy to power the external device. However, in terms
of total energy, compared to the configurations executing the
model on the raspberry pi, it has lower energy consumption.

Config. Pre-
Processing

Model
CPU

Model
TPU

Instant
Energy

Total
Energy

Conf. 1 No No No 3.1 9.92
Conf. 2 Yes No No 3.8 42.56
Conf. 3 Yes Yes No 3.91 156.24
Conf. 4 Yes No Yes 5.22 133.47
Conf. 5 No Yes No 3.87 121.86
Conf. 6 No No Yes 5.15 103.77

TABLE VI: Energy consumption of different inference steps.

E. Limitations

As with the majority of studies, the design of the current
study is subject to some limitations. Different scenarios and
users will be tested in future work to study its generalization
ability further.

In addition, while this study does not address the issue of
data poisoning in HPE, it is an important consideration for
future research [22]. In industrial environments using edge
devices, the detection and correction of adversarial samples
are essential to developing robust solutions, and some works
propose some solutions to this [56]. Data poisoning refers
to the intentional manipulation of training data to produce
a biased or incorrect model [57]. This can have serious
consequences on HPE, as it can lead to incorrect estimates and
reduce the overall accuracy of the system. Further research is
needed to address this issue and to develop robust methods
for mitigating the impact of data poisoning on HPE [56].

V. CONCLUSIONS AND FUTURE WORKS

This work faces the problem of the HPE in TIs. First,
an auto-labeling of the dataset has been developed, which
is different from other works involving a tedious dataset
construction process.

The pre-processing of the images lets Blazepose recognize
poses in 78.65% of the cases. Only these images in which
Blazepose recognizes the poses are considered for the dataset.
This dataset comprises these original images and their corre-
sponding poses. In addition, a data augmentation process is
carried out to increase the variability in the dataset.

In the second part of the study, THPoseLite is proposed
as a new CNN that extracts poses from TIs. MobileNetV2
is the selected architecture for the convolutional part of TH-
PoseLite. MobileNetV2 has been compared to ResNet50 and
UNET. After experimentation with validation, MobileNetV2
and ResNet50 are appropriate for recognizing poses in TIs.

In the third part of our work, THPoseLite is quantized in
8 bits to enable running in a TPU accelerator. Results show
that the quantization process leads to a very small precision
loss in MobileNetV2 but very high in ResNet50. Therefore,
MobileNetV2 is found to be the most appropriate architecture
for THPoseLite. Moreover, a speed-up of 15.61% is achieved
concerning Blazepose. Thus, THPoseLite can be run in an
edge device, processing TIs and obtaining poses in real-time
(12.28 FPS , while the thermal camera records images at 9
FPS ). Finally, the proposed approach is deployed in the Smart
Home of the University of Almerı́a.

In future works, other HPE frameworks will be tested
with the pre-processed images to enhance the accuracy of
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ground truth poses. Furthermore, the 3D HPE approach will be
further studied, incorporating stereoscopic and depth cameras
to annotate the datasets.
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