Acceleration of 3D Feature-Enhancing Noise
Filtering in Hybrid CPU/GPU Systems

V. Gonzdlez-Ruiz'", J.J. Moreno' and J.J. Ferniandez

'Department of Informatics, University of Almeria, Agrifood Campus of
International Excellence (ceiA3), Carretera de Sacramento s/n, Almerfa,
04120, Spain.
2Spanish National Research Council (CINN-CSIC), Health Research
Institute of Asturias (ISPA), Av Hospital Universitario s/n, Oviedo,
33011, Spain.

*Corresponding author(s). E-mail(s): vruizQual.es; JJ.FernandezQcsic.es;

Abstract

FlowDenoising is a new approach to noise reduction in biological volumes
obtained with three-dimensional electron microscopy (3DEM). Its abilities to
enhance the structural features stem from the fact that an anisotropic Gaussian
filtering is steered according to the local structures. To this end, the Optical
Flow (OF) among consecutive slices is estimated, which is the most computa-
tionally expensive step in this approach. In this article, a hybrid CPU/GPU
implementation of FlowDenoising is introduced and evaluated. It exploits parallel
computing by distributing the workload among multiple cores and takes advan-
tage of the massive processing in GPUs to accelerate the OF estimation. The
hybrid implementation provides remarkable speed-up factors and an important
reduction of the processing time, which is particularly relevant for the denoising
of huge volumes typically found in 3DEM.

Keywords: High performance computing, GPU, CPU, Heterogeneous computing,
Noise filtering, Optical flow, 3D electron microscopy.

1 Introduction

High-Performance Computing (HPC) refers to the efficient use of computing resources
to address complex computational problems that can be expressed as algorithms that,

in general, may exceed the power of standard computing systems. Independently of
the underlying hardware, HPC relies on the following main parallel programming
paradigms [1, 2]. First, Parallel Computing (PC), when the problem is divided into
smaller sub-problems that can be executed simultaneously typically as processes or
threads, which not necessarily perform the same computation. This programming
model is also referred to as Multiple Instruction Multiple Data (MIMD) [1] or thread-
level parallelism [2], and it is usually implemented on multicore systems, both, with
shared and distributed memory architectures. Second, Vector Processing (VP), when
the Processing Units (PUs) perform the same computation over different chunks (vec-
tors) of data. This model is also called Sing le Instruction Multiple Data (SIMD) [1]
and basically exploits the data parallelism, hence also referred to as data-level par-
allelism [2]. Usually, Graphics Processing Units (GPUs) and Field-Programmable
Gate Arrays (FPGAs) are efficient SIMD accelerators, though lately acceleration sys-
tems based on Tensor Processing Units (TPUs) or Neural Processing Units (NPUs)
optimized for deep learning tasks are also appearing [2].

Nowadays, most HPC systems, desktop computers, and even laptops include GPUs
that can be used to perform vector processing, even in parallel computing contexts
(e.g., running multiple GPU processes —streams— on the same GPU). In fact, according
to top500 (https://www.top500.0rg/), two of the three most powerful HPC computers,
Frontier (2023) and LUMI (2022), mount thousands of AMD Instinct MI250X (a high-
performance GPU). In the case of the new desktops and laptops, almost all of them
include at least an in-chip GPU (such as in the case of Intel Core processors) or a
discrete GPU (typically from Nvidia or AMD).

The growing availability of systems composed of different types of computing
resources or with different computing capabilities brought new challenges to the HPC
field. And the concept of heterogeneous computing or hybrid computing then emerged,
where the different resources (CPUs, GPUs, FPGAs) available in the system are
combined and jointly collaborate in tackling a problem [3, 4]. To make the most of
these heterogeneous systems, the problem is decomposed into tasks that are specifi-
cally distributed to the resources that are best suited for them and/or load balancing
mechanisms are used for the task distribution [3, 4].

Three-Dimensional Electron Microscopy (3DEM) is a set of 3D imaging techniques
based on electron microscopy that play an important role in biology and biomedicine
to visualize and analyze the inner architecture of cells, their compartments and their
molecular organization [5, 6]. In all these 3DEM techniques, image processing is an
indispensable tool involved in the preprocessing of the acquired 2D images, their
mutual alignment, and their combination to derive the 3D tomographic volume [7].
Afterwards, image processing and analysis are essential to facilitate volume visual-
ization and its objective interpretation (e.g., denoising, segmentation, morphological
analysis of structural features) [7].

Denoising is an essential step to enable the visualization and interpretation of
the 3DEM volumes due to their high noise levels [8]. Gaussian filtering is one of the
most common methods used in the field because of its speed and ease of use, despite
its tendency to blur the features. There have been several proposals of sophisticated
denoising methods that reduce noise with abilities to preserve and enhance features [8],

including anisotropic non-linear diffusion [9-11] and recent deep-learning approaches
based on the Noise2Noise or Noise2Void strategies [12—14]. However, these methods are
characterized by their tricky parameter tuning or their computational burden, which
is an important limitation due to the huge size of 3DEM volumes (in the order of
GigaBytes). There have been a number of HPC strategies to accelerate these methods
based mainly on pure CPUs or GPUs [8, 11, 15-20] while deep-learning solutions are
known to require GPUs. However, these HPC efforts have not completely paved the
way for the extensive application of these methods and, as a consequence, Gaussian
filtering still remains a common choice in the 3DEM field [21-23].

Recently, we proposed a new approach to denoising volumes with abilities to
feature enhancement [24]. The associated software, FlowDenoising!, implements an
anisotropic Gaussian-like filter guided by the estimation of the Optical Flow (OF)
between adjacent slices in the 3D volume [25]. The method uses OF to estimate the
local variations of the features across the volume and locally adapt the Gaussian fil-
tering accordingly, thereby enhancing the biological structures, avoiding blurring, and
overcoming the limitation of the standard Gaussian filtering. FlowDenoising has been
shown to be competitive with state-of-the-art structure-preserving denoising meth-
ods, including deep-learning-based, with the important advantage that it maintains
the ease of use of Gaussian filtering [24]. However, compared to standard Gaussian
filtering, the use of the OF in FlowDenoising significantly increases the computational
needs of the filtering algorithm.

In this article we present a hybrid FlowDenoising strategy to get the most out of
standard computers, combining CPU and GPU. More specifically, we have used the
GPU to estimate the OF, a computation that takes advantage of vector processing,
while keeping the parallel computing capability at the same time. As a result of the
joint exploitation of the CPU (leveraging the availability of multiple processing units)
and the GPU (which can be used by several streams in parallel), the performance of
FlowDenoising is significantly increased with regard to a pure CPU-based solution.

The rest of the article is organized as follows. First, the approach to 3D noise
filtering in FlowDenoising is presented and its relevance in the context of 3DEM is
highlighted. Next, our hybrid CPU/GPU implementation of FlowDenoising is intro-
duced. After this, the evaluation tests and results are presented and analyzed. And
finally, the key conclusions are outlined.

2 3D Noise filtering with feature enhancement

FlowDenoising estimates the local displacements (in general, deformations) of the
structures between neighboring 2D slices of the 3D volume using an OF estimator,
and then compensates for these changes by nonrigid alignment (i.e. warping) of the
2D slices before applying a Gaussian filtering [24]. This is equivalent to steering the
Gaussian filtering to the local features present in the volume, thus enhancing the
structures and avoiding blurring. This operation is performed along the three axes Z, Y
and X consecutively by exploiting the separability property of the Gaussian function.
Fig. 1 illustrates the filtering strategy in FlowDenoising along the Z-dimension, with

! Available at https://github.com/microscopy-processing/FlowDenoising.

https://github.com/microscopy-processing/FlowDenoising

‘ Iz—l |

Position of a I, } ‘ RS AN
structure in the S
PR Dt
' .

current plane

Z-dimension =\’

Position of the same
structure in the
plane I,

-# Y-dimension

-------# X-dimension

Fig. 1 Filtering strategy in FlowDenoising.

five consecutive XY slices involved in the filtering of the slice I, (highlighted in gray).
Four displacement fields (represented by the arrows) determined by an OF estimator
are used for the alignment of the structures found in the slices I, o, I,_1, I.41, and
I.12 (solid gray circles) with respect to those present in I, (dashed hollow circles),
hence producing OF-compensated planes. The Gaussian filter along the Z-dimension
(dotted straight line) is then applied to the OF-compensated slices so as to yield the
filtered version of the slice 1.
The computation involved in FlowDenoising is described by Eq. 1

I+ H = R*(RY(R%(I) h%) «hY) « b, (1)
where a volume I is convolved with a 3D Gaussian kernel H, being?

2 =z
RAM) = {{ d ([¢,:,:]) =1z,
forz’:szfw,z+k}forz:0,l,~~,N71},
RY(I) = {{ d (Iy,]) =~ Iy,
fory =y—k,--,y+k}fory=0,1,--- ,N—1},and
' =z
RXI) = {{ d (I[:,:;,2') = I[s,:,]
fora’ =z —k,--- ,x+k}forz=0,1,--- ,N -1},

i—
and h% hY h¥ three 1D Gaussian kernels. In this formulation, dJ() denotes a dis-
placement field that expresses the local changes in the slice I; to be as similar as
possible to I;. As shown in the previous equations, for each slice to filter, there will be
2k slices that will be warped (& slices on each side of the reference slice, for each axis).
Thus, the size of the Gaussian kernel is given by 2k + 1. In FlowDenoising, k = 40

2Notice that we have used the NumPy indexing notation.

https://numpy.org/doc/stable/user/basics.indexing.html

Fig. 2 FlowDenoising on 3DEM datasets

rounded to the nearest integer, with ¢ being the standard deviation of the Gaussian
filtering.

FlowDenoising uses the Farnebédck OF estimator to compute the displacement
fields between neighbor planes [26]. This algorithm has two main parameters: the
window size w and the number of levels [. Small values of w and [prioritize fine
structural accuracy in the OF estimate needed for our denoising purposes. By default,
FlowDenoising uses w = 5 and | = 3, which in general provide good results. Thus,
from a practical point of view, FlowDenoising has only one parameter, the standard
deviation of the Gaussian filtering, o [24].

Fig. 2 shows the effects of the noise reduction achieved by FlowDenoising on
representative 3DEM datasets, (A) Golgi apparatus from an unicellular green algae
visualized with cryo-electron tomography [27] and (B) rat brain tissue visualized with

FIB-SEM tomography [28, 29]. The figure shows, from left to right, the original vol-
ume, denoised with FlowDenoising, and denoised with standard Gaussian filtering.
XY and XZ planes of the volumes are shown, with a little white crosshair denoting
their correspondence. A sigma value of 1.5 was used in the standard Gaussian filtering
and FlowDenoising in both datasets. The dashed boxes denote areas that are shown
magnified in the insets. The bars correspond to 100 nm (A) and 250 nm (B). As can
be seen in this figure, standard Gaussian filtering reduces the noise at the expense of
blurring the structures (which is especially evident around the membranes), whereas
FlowDenoising preserves the sharpness of the membranous structures while substan-
tially attenuating the noise at the same time. The effects are particularly striking in the
dataset in Fig. 2(A), which comes from cryo-electron tomography, a 3SDEM modality
with particularly high noise levels and low contrast.

3 Hybrid CPU/GPU implementation

Most modern computers are equipped with multicore processors and GPUs, which
provide them with enormous computational power. Strategies for hybrid computing,
however, are needed to take full advantage of this power.

This section describes the main contribution of this work, the hybrid CPU/GPU
implementation of the filtering approach in FlowDenoising. We combine parallel com-
puting in shared-memory multicore computers with GPU computing. For CPU-based
parallel computing, we leverage Multiprocessing available in the Standard Python
Library. Here, it is important to highlight that the processes use exclusive memory
spaces and therefore some intercommunication mechanism is required between pro-
cesses that solve a “shared” problem (in our case, the filtering of an input volume I,
generating an output volume O). The Multiprocessing package solves this problem by
using shared memory. For GPU computing, we make use of a CUDA (Compute Uni-
fied Device Architecture) version of the Farnebéck algorithm for OF estimation, as
described below. In the CUDA programming model, the CPU performs kernel invo-
cations to accelerate the corresponding computation on the GPU. The input/output
data of the GPU kernels are communicated between the CPU and the GPU memories.
Modern Nvidia GPUs support asynchronous, concurrent kernels/streams executions.

Figs. 3 and 4 describe our hybrid CPU/GPU implementation of FlowDenoising in
schematic and pseudo-code forms, respectively. P parallel CPU processes are spawned,
each of them in charge of a subset of contiguous slices of the volume along each
dimension, Z, Y, and X (Fig. 3 and Code blocks 3, 5, and 7 in Fig. 4). They work
in parallel and independently, by sweeping across their own slices one by one. Each
process uses its own exclusive memory space, replicating all data structures except
input and output volumes, which are allocated in shared memory (Fig. 3). For each
slice to be processed, there is a number of k (= 40 +1) adjacent slices (see Steps *.1.1)
in Fig. 4) that are involved in the filtering along the corresponding direction Z, Y,
and X. The OF between the current slice acting as a reference and the neighbor slices
is then estimated (Steps *.1.1.1). Next, these neighbor slices are warped according to
the OF (Steps *.1.1.2). Finally, Gaussian filtering is applied (Steps *.1.1.3). Note that

https://docs.python.org/3/library/multiprocessing.html

Input Volume

(N, N,N,)

Output Volume

(N,N,N,)
process 1 process P
Processing P Processing
CPUs

N/P slices N/P slices

s

I[z] : Reference CPU-GPU >
I[z']: Slice towarpﬁ I communications d ::Izlacement

GPU

GPU stream 1 GPU stream P

\
Optical Flow
Estimation
1slice

Optical Flow

Estimation
1slice

s
Fig. 3 Hybrid CPU/GPU implementation of FlowDenoising.

the execution of Steps *.1.1.1 for OF estimation in the CPU results in a pure CPU
parallel implementation of FlowDenoising.

An analysis of the running times spent in Steps *.1.1.1, *.1.1.2 and *.1.1.3 of
FlowDenoising (for a volume of 100 x 1024 x 1024 voxels, on an Intel Core i7-12700H,
and parameters [= 3, w = 5, o7 = oy = ox = 2.0) revealed that the estimation of
the OF (*.1.1.1) requires 16 and 6 more time than the convolution (*.1.1.3) and the
warping (*.1.1.2), respectively. For this reason, we decided to estimate the OF in a
GPU. To do this, we took advantage of the fact that there is an accelerated CUDA-
based version for Nvidia GPUs of the Farnebick method® in OpenCV. Thus, each CPU
process launches the OF estimation of a slice to the GPU at a time, thus making P
GPU streams running concurrently in the device (Fig. 3). This is denoted by “GPU”
in Steps *.1.1.1 within the pseudo-code in Fig. 4. Note, however, that to achieve this,
all CPU processes (in each iteration of Steps *.1.1) must transmit the corresponding
slices to the GPU memory (the slice acting as a reference and the slice to be warped),
and the resulting displacement fields must be sent from the GPU memory back to
the CPU memory (Fig. 3). These data transfers might limit the GPU acceleration, as
shown later in Section Results, when we compare with CPU-only filtering.

3https://docs.opencv.org/3.4/d9/d30/classcv.1_1cuda_1_1FarnebackOpticalFlow.html

https://docs.opencv.org/3.4/d9/d30/classcv_1_1cuda_1_1FarnebackOpticalFlow.html

FlowDenoising(I,H, P): — O
1. O < zeros_like(I)
2. ¢ + Lshape[0]/P / * Chunk size in the Z domain /
3. for p in range(P), in parallel run: /* Filtering in the Z domain * /
1. for z in range(c):
1. for k in range(h%.size):

2=z
1. d <« flow(I[z+k+cp,:,], Iz

y5i)) /* GPU %/
2=z
2. RZ(1) « warp(I[z+k +cp,:,:], d)
3. Oz +cp,:,:] + Oz +cp,:,:] + REZ(I)hZ[K]
4. ¢ < Lshape[l]/P / # Chunk size in the Y domain * /
5. for p in range(P), in parallel run: / * Filtering in the Y domain x /
1. for y in range(c):
1. for k in range(hY .size):
Y-y
1. d <« flow(I[:,y +k+cp,], 15y, 1)) /* GPU */
Y =y

2. RY(I) < warp(I[;,y + k+cp,:], d)
3. O,y +ep,:] < O,y +cp,:] + RY (DhY[k]

6. ¢ + Lshape[2]/P / * Chunk size in the X domain * /
7. for p in range(P), in parallel run: /* Filtering in the X domain * /
1. for z in range(c):
1. for k in range(h¥ size):
' =z
1. d <« flowI[:,:z+k+cpl,I[;,:, 2]) /* GPU %/
' =z
2. RX(1) < warp(I[;,;,z +k+cp], d)
3. O[5,z +cp] + O,z + ep] + RX(I)hX[K]

Fig. 4 Pseudo-code Python description of FlowDenoising.

4 Results

To evaluate the performance of the hybrid implementation of FlowDenoising, we
have used two representative 3DEM datasets [27, 30]. These datasets are publicly
available in EMDataResource (http://www.emdataresource.org), with id 3977 and
10780, respectively. They have the typical volume sizes found in 3DEM. They have
100 x 1024 x 1024 and 1000 x 928 x 960 voxels (Z,Y,X), in single precision floating
point, that is, around 400 MB and 1.7 GB in size, respectively. In the following, these
datasets are denoted by 3977 and 10780, respectively.

Three representative modern multicore computers have been used for the eval-
uation. First, a Bull Sequana X410-A5 server equipped with 2 AMD EPYC 7302
processors and a Nvidia Volta V100 GPU with 5120 CUDA cores. Second, a Fujitsu
Celsius server that mounts an Intel Xeon E5-2697v4 processor and a Nvidia GTX 1080

https://numpy.org/doc/stable/reference/generated/numpy.zeros_like.html
https://numpy.org/doc/stable/reference/generated/numpy.shape.html
https://docs.python.org/3/library/functions.html#func-range
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.size.html
https://docs.opencv.org/3.4/d9/d30/classcv_1_1cuda_1_1FarnebackOpticalFlow.html
https://numpy.org/doc/stable/user/basics.indexing.html#slicing-and-striding
https://docs.opencv.org/3.4/da/d54/group__imgproc__transform.html#gab75ef31ce5cdfb5c44b6da5f3b908ea4
http://www.emdataresource.org

Table 1 Processing times (in seconds) and speed-ups vs. the number of cores and the use of the
GPU, for the 3977 volume (100 x 1024 x 1024, float32, 401 MB, ! = 3, w = 5, 0z = oy = ox = 2.0).

Number of AMD EPYC 7302 + Nvidia Tesla V100

cores | Time (CPU) Speed-up (CPU) Time (CPU/GPU) Speed-up (CPU/GPU)

1 1112.72 1.00 220.84 5.04

2 564.35 1.97 127.18 8.75

4 286.62 3.88 87.34 12.74

8 148.79 7.48 78.97 14.09

16 77.97 14.27 89.42 12.44
Number of Intel Xeon E5-2697v4 + Nvidia GTX 1080

cores | Time (CPU) Speed-up (CPU) Time (CPU/GPU) Speed-up (CPU/GPU)

1 1383.29 1.00 321.95 4.30

2 744.90 1.86 210.39 6.57

4 473.23 2.92 146.73 9.43

8 292.97 4.72 128.19 10.79

16 171.01 8.09 131.76 10.50
Number of Intel Core i7-12700H + Nvidia RTX 3060

cores | Time (CPU) Speed-up (CPU) Time (CPU/GPU) Speed-up (CPU/GPU)

1 814.70 1.00 186.34 4.37

2 573.18 1.42 119.52 6.82

4 284.93 2.86 81.40 10.01

8 174.99 4.66 70.15 11.61

16 138.18 5.90 72.82 11.19

GPU with 2560 CUDA cores. Third, a Dell G15 laptop with an Intel Core i7-12700H
and a Nvidia RTX 3060 with 3584 CUDA cores.

For evaluation, we have considered a pure CPU-based parallel version (that is, with
the OF estimation carried out in the CPU) and the hybrid CPU/GPU implementation.
The results presented in the following paragraphs are denoted by CPU and CPU/GPU,
respectively.

Tables 1 and 2 present the processing times and speed-ups obtained for the two
test volumes and the three machines. All speed-up factors are with respect to the
pure CPU version of the code with a single core. These results clearly show that
the hybrid CPU/GPU implementation of FlowDenoising provides significant speed-
ups compared to the CPU-only version, and this is true for all the tested computers.
Another important aspect to highlight is that these speed-ups depend on the problem
size: the larger the volume dimensions, the higher the speed-ups. This is particularly
true for the CPU/GPU implementation, where a significant increase is observed in
Table 2 (obtained with the largest volume) with regard to Table 1. A remarkable
speed-up factor approaching 30x is obtained with the first machine using 8 or 16 CPU
processes and GPU streams (Table 2). Apart from the speed-up factors, an important
detail from the practical and user’s point of view is the fact that the hybrid solutions
may reduce the processing time required by huge volumes from hours to the range of
5-10 minutes in systems with 4-8 cores (Table 2).

Figs. 5 and 6 graphically show the speed-up obtained by the CPU and hybrid
CPU/GPU versions. Clearly, GPU usage significantly improves the speed-ups, and

Table 2 Processing times (in seconds) vs. the number of cores and the use of the GPU, for the
10780 volume (1000 x 928 x 960, float32, 1.7 GB, | =3, w =5, 0z = oy = ox = 2.0).

Number of AMD EPYC 7302 + Nvidia Volta V100

cores | Time (CPU) Speed-up (CPU) Time (CPU/GPU) Speed-up (CPU/GPU)

1 9959.94 1.00 1440.45 6.91

2 5113.35 1.95 839.85 11.86

4 2565.50 3.88 490.90 20.29

8 1289.82 7.72 355.15 28.04

16 654.80 15.21 333.54 29.86
Number of Intel Xeon E5-2697v4 + Nvidia GTX 1080

cores | Time (CPU) Speed-up (CPU) Time (CPU/GPU) Speed-up (CPU/GPU)

1 11743.69 1.00 2421.88 4.85

2 6241.71 1.88 1625.37 7.23

4 3593.58 3.27 1074.67 10.93

8 2293.43 5.12 867.26 13.54

16 1249.35 9.40 763.40 15.38
Number of Intel Core i7-12700H + Nvidia RTX 3060

cores | Time (CPU) Speed-up (CPU) Time (CPU/GPU) Speed-up (CPU/GPU)

1 7158.56 1.00 1352.01 5.29

2 4361.95 1.64 717.52 9.98

4 2279.76 3.14 492.98 14.52

8 1467.92 4.88 402.43 17.79

16 1093.86 6.54 367.17 19.50

16

Speed-ups for 3977 volume

Speed-up

Ar AMD EPYC 7302 —— |
AMD EPYC 7302 + Nvidia Volta V100 ===
Intel Xeon E5-2697v4 —— |
2r Intel Xeon E5-2697v4 + Nvidia GTX 1080 ===
Intel Core i7-12700H
0))) Intel Core i7-12700H + Nvidia RTX 3060
1 2 4 8 16
N. Processes
Fig. 5 Speed-ups for 3977 volume (see Table 1).

these improvements are higher if the volume to filter is big enough (Fig. 6). The curves
also reflect the computational power of the GPUs, in terms of CUDA cores, with the

10

Speed-ups for 10780 volume
30 T T T

AMD EPYC 7302 ——
AMD EPYC 7302 + Nvidia Volta V100 ===
Intel Xeon E5-2697v4 E
Intel Xeon E5-2697v4 + Nvidia GTX 1080 ===
Intel Core i7-12700H
Intel Core i7-12700H + Nvidia RTX 3060

Speed-up

0 1 1 1
1 2 4 8 16

N. Processes

Fig. 6 Speed-ups for for 10780 volume (see Table 2).

Table 3 Time analysis for 3977 volume in the Intel Core i7-12700H 4+ Nvidia
RTX 3060 (see Fig. 7). Times are in seconds.

Number of OFE Warping Convolution
cores | (Steps *.1.1.1) (Steps *.1.1.2) (Steps *.1.1.3) Transfer
1 30.43 75.87 193.50 56.04
2 23.91 45.00 58.20 54.97
4 20.72 27.60 19.18 67.15
8 24.83 17.90 8.21 99.79
16 32.11 12.78 4.38 183.59

Volta V100 showing the highest curve and the GTX 1080 the lowest. It can also be
observed that the pure CPU version shows a rather linear speed-up curve, with the
slope being dependent on the platform (with better scalability in the first machine).
However, the slope of the speed-ups in the hybrid CPU/GPU version is decreasing
as a function of the number of processes. This is caused by the overhead from data
transmission between the CPU and GPU in relation to the workload in the GPU and,
therefore, the effective speed-up provided by the GPU, which depends on the chunk
size (see Steps 2, 4 and 6 in the Fig. 4). Thus, for smaller volumes the penalty is larger,
and even a decay in the speed-up factor is obtained with a number of CPU processes
and GPU streams higher than 8 (Fig. 5).

In order to further explore the decreasing slope of the speed-ups in the hybrid
CPU/GPU version, we have measured the time spent in the most demanding steps
of FlowDenoising (OFE, warping, and convolution) and CPU/GPU transfers. Figs.
7 and 8 as well as Tables 3 and 4 show the results for the Dell G15 laptop, but
a similar behavior has been obtained for the other machines. It can be seen that

11

200

Time analysis for 3977 volume

180

140 -

120

Time (seconds)
=
o
T

60

40

OFE (Steps *1.1.1) ——

Warping (Steps *.1.1.2) ——
Convolution (Steps *.1.1.3)
Transfer

N. Processes

Fig. 7 Time analysis for 3977 volume in the Intel Core i7-12700H + Nvidia RTX 3060 (see Table 3).
OF estimation (OFE), warping and convolution times (see Fig. 4) are the average time among all the
processes. The transfer time is the total time.

1400

1200

1000

800

600

Time (seconds)

400

200

Time analysis for 10780 volume

T
OFE (Steps *.1.1.1) ———
Warping (Steps *.1.1.2) ——
Convolution (Steps *.1.1.3) .
Transfer

8 16
N. Processes

Fig. 8 Time analysis for 10780 volume in the Intel Core i7-12700H + Nvidia RTX 3060 (see Table
4). OF estimation (OFE), warping and convolution times (see Fig. 4) are the average time among all
the processes. The transfer time is the total time.

the computational part of FlowDenoising scales reasonably well with the number of

12

Table 4 Time analysis for 10780 volume in the Intel Core i7-12700H +
Nvidia RTX 3060 (see Fig. 8). Times are in seconds.

Number of OFE Warping Convolution
cores | (Steps *.1.1.1) (Steps *.1.1.2) (Steps *.1.1.3) Transfer
1 247.25 566.05 1334.43 260.64
2 153.21 327.16 388.38 309.97
4 110.23 205.70 127.42 403.54
8 105.22 155.46 51.21 631.99
16 129.71 122.37 24.54 1144.67

processes, which is especially true for warping and convolution, while OFE exhibits a
limited gain for higher number of processes. However, the transfer time of the data
between the CPU memory and the GPU memory increases almost linearly with the
number of processes, which might turn into a cause of the drop in efficiency in terms
of speed-up. Nonetheless, note that these transfer times are total accumulated times.
In practice, the execution through GPU streams indeed overlaps computation with
these communications, thereby hiding part of the latency associated to these transfers.
Fig. 9 (a snapshot of the command nvtop) presents the percentage of GPU power
used during an execution of FlowDenoising on the Dell G15 with the 3977 dataset
using 16 GPU streams. It shows around 90% of use during the first stage (filtering
in Z domain, where the slices are 1024x1024 in size), and then approach 100% for
the second and third stages (Y and X domains, with slices of 1024x100). Therefore,
despite the transfers, the GPU remains nearly at the full computation power thanks
to the latency hiding achieved by the use of GPU streams, thus suggesting that the
implementation is not latency-bound.

To gain a deeper understanding, we also conducted a comparative analysis between
the aforementioned implementation of FlowDenoising and an alternative approach
with reduced transfers. In this alternative implementation, the slices required by each
stream are cached in the GPU memory, resulting in a reduction of CPU/GPU data
traffic as they are uploaded to the GPU only once per filtering direction. The results
showed that, as a consequence of the temporal overlapping of the computation and
the transmission of the slices in the described version, this alternative version yielded
only a slight improvement in wall-times, approximately 1% shorter. However, it came
at the expense of a significant increase in GPU memory usage. Given our specific
interest in denoising large volumes using the maximum number of PUs, we ultimately
chose to use the described version of FlowDenoising to showcase the execution times.

5 Conclusions

In this article, we have presented and evaluated a hybrid CPU/GPU implementation
of FlowDenoising, a feature-enhancing noise filtering approach for volumes in 3DEM.
Our hybrid strategy consists of exploiting the parallel capabilities of modern multicore
computers by distributing the set of slices among the CPUs, and taking advantage of
the higher computational capabilities of GPUs to launch the most expensive step in
FlowDenoising, namely the estimation of the optical flow, to these accelerators. The

13

[NVIDIA GeForce RTX 3060 Laptop GPU] 2@ 8x 0.000 KiB/s 0.000 KiB/s
210MHz 810MHz °C N/A% 18 / 115 W

0%] [0.738Gi/6.000G1i]

Fig. 9 Percentage of GPU computing power and memory used during a FlowDenoising execution.

results we obtained clearly show that this hybrid strategy outperforms a pure CPU-
based parallel implementation. From the practical point of view, it is remarkable the
reduction of processing time achieved by the hybrid strategy, which can denoise huge
volumes typically found in 3DEM in just few minutes in rather standard computers
equipped with 4-8 cores and a GPU. Our future plans include exploration of more
elaborate solutions to improve the ratio computation vs. transfer times in the GPU.
Furthermore, we are considering the development of multi-GPU implementations.
These future improvements are expected to further accelerate FlowDenoising.

Acknowledgments. Work supported by MCIN/AEI/10.13039/501100011033,
“ERDF A way of making Europe” and by the “European Union NextGener-
ationEU/PRTR” through grants PID2021-1232780B-100, TED2021-132020B-100,
PID2022-139071NB-100 and PDC2022-133370-100.

14

Declarations

Ethical Approval
Not applicable.

Competing interests

The authors have no competing interests to declare that are relevant to the content
of this article.

Authors’ contributions

VGR and JJF: Conceptualization, Investigation, Software, Validation, Writing, Fund-
ing Acquisition. JJM: Investigation, Software.

Funding

This work was supported by Spanish Ministry of Science and Innovation
MCIN/AEI/10.13039/501100011033, “ERDF A way of making Europe” and by the
“European Union NextGenerationEU/PRTR” through grants PID2021-1232780B-
100, TED2021-132020B-100, PID2022-139071NB-100 and PDC2022-133370-100.

Availability of data and materials

The data of this study will be available from the corresponding authors on
reasonable request. Code will be available through the github of the authors
(https://github.com /microscopy-processing/FlowDenoising).

15

References

[1]

Flynn, M.: Some computer organizations and their effectiveness. IEEE Trans.
Computers C-21, 948-960 (1972)

Hennessy, J.L., Patterson, D.A.: Computer Architecture. A Quantitative
Approach. 6th Ed. Morgan Kauffman, USA (2019)

Brooks, D.: CPUs, GPUs, and Hybrid Computing. IEEE Micro 31, 4-6 (2011)

Agulleiro, J.I., Vazquez, F., Garzén, E.M., Fernandez, J.J.: Hybrid comput-
ing: CPU4+GPU co-processing and its application to tomographic reconstruction.
Ultramicroscopy 115, 109-114 (2012) https://doi.org/10.1016/j.ultramic.2012.
02.003

Eisenstein, M.: Seven technologies to watch in 2023. Nature 613, 794-797 (2023)

Peddie, C.J., et al.: Volume electron microscopy. Nature Reviews Methods
Primers 2, 51 (2022) https://doi.org/10.1038/s43586-022-00131-9

Fernandez, J.J., Martinez-Sanchez, A.: Computational methods for three-
dimensional electron microscopy (3DEM). Computer Methods and Programs in
Biomedicine 225, 107039 (2022) https://doi.org/10.1016/j.cmpb.2022.107039

Fernandez, J.J.: Computational methods for electron tomography. Micron 43,
1010-1030 (2012) https://doi.org/10.1016/j.micron.2012.05.003

Fernandez, J.J., Li, S.: An improved algorithm for anisotropic nonlinear diffusion
for denoising cryo-tomograms. J. Struct. Biol. 144, 152-161 (2003) https://doi.
org/10.1016/j.jsb.2003.09.010

Fernandez, J.J., Li, S.: Anisotropic nonlinear filtering of cellular structures in
cryo-electron tomography. Comput. Sci. Eng. 7(5), 54-61 (2005) https://doi.org/
10.1109/MCSE.2005.89

Moreno, J.J., Martinez-Sanchez, A., Martinez, J.A., Garzon, E.M., Fernandez,
J.J.: TomoEED: fast edge-enhancing denoising of tomographic volumes. Bioinfor-
matics 34, 3776-3778 (2018) https://doi.org/10.1093/bioinformatics/bty435

Lehtinen, J., Munkberg, J., Hasselgren, J., Laine, S., Karras, T., Aittala, M.,
Aila, T.: Noise2Noise: Learning image restoration without clean data. In: Dy, J.,
Krause, A. (eds.) Proceedings of the 35th International Conference on Machine
Learning, vol. 80, pp. 2965-2974 (2018)

Krull, A., Buchholz, T.-O., Jug, F.: Noise2void-learning denoising from single
noisy images. In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 2129-2137 (2019). https://doi.org/10.1109/CVPR.
2019.00223

16

https://doi.org/10.1016/j.ultramic.2012.02.003
https://doi.org/10.1016/j.ultramic.2012.02.003
https://doi.org/10.1038/s43586-022-00131-9
https://doi.org/10.1016/j.cmpb.2022.107039
https://doi.org/10.1016/j.micron.2012.05.003
https://doi.org/10.1016/j.jsb.2003.09.010
https://doi.org/10.1016/j.jsb.2003.09.010
https://doi.org/10.1109/MCSE.2005.89
https://doi.org/10.1109/MCSE.2005.89
https://doi.org/10.1093/bioinformatics/bty435
https://doi.org/10.1109/CVPR.2019.00223
https://doi.org/10.1109/CVPR.2019.00223

[14]

[17]

[18]

[19]

[20]

[22]

[23]

Buchholz, T.-O., Krull, A., Shahidi, R., Pigino, G., Jekely, G., Jug, F.: Content-
aware image restoration for electron microscopy. In: Muller-Reichert, T., Pigino,
G. (eds.) Three-Dimensional Electron Microscopy. Methods in Cell Biology, vol.
152, pp. 277-289. Academic Press, USA (2019). https://doi.org/10.1016/bs.mcb.
2019.05.001

Tabik, S., Garzéon, E.M., Garcia, 1., Fernandez, J.J.: High performance noise
reduction for biomedical multidimensional data. Digital Signal Processing 17,
724-736 (2007) https://doi.org/10.1016/j.dsp.2006.11.004

Fernandez, J.J.: High performance computing in structural determination by elec-
tron cryomicroscopy. J. Struct. Biol. 164, 1-6 (2008) https://doi.org/10.1016/j.
jsb.2008.07.005

Cuomo, S., Michele, P.D., Piccialli, F.: 3D data denoising via Nonlocal Means
filter by using parallel GPU strategies. Comput Math Methods Med 164, 523862
(2014)

Tabik, S., Murarasu, A., Romero, L.F.: Anisotropic nonlinear diffusion for filtering
3d images on gpus. In: 2014 IEEE International Conference on Cluster Computing
(CLUSTER) (2014). https://doi.org/10.1109/CLUSTER.2014.6968786

Kwon, K., Kim, M.S., Shin, B.S.: A fast 3D adaptive bilateral filter for ultrasound
volume visualization. Comput Methods Programs Biomed 133, 25-34 (2016)
https://doi.org/10.1016/j.cmpb.2016.05.008

Yano, K., Sugimoto, K., Kamata, S.-i.: GPU-friendly Approximate Bilateral Fil-
ter for 3D Volume Data. In: 2018 Asia-Pacific Signal and Information Processing
Association Annual Summit and Conference (APSIPA ASC), pp. 2054-2058
(2018). https://doi.org/10.23919/APSIPA.2018.8659773

Steyer, A.M., Ruhwedel, T., Nardis, C., Werner, H.B., Nave, K.A., Mdobius,
W.: Pathology of myelinated axons in the PLP-deficient mouse model of spastic
paraplegia type 2 revealed by volume imaging using focused ion beam-scanning
electron microscopy. J Struct Biol 210, 107492 (2020) https://doi.org/10.1016/j.
jsb.2020.107492

Hennies, J., Lleti, J.M.S., Schieber, N.L., Templin, R.M., Steyer, A.M., Schwab,
Y.: AMST: Alignment to Median Smoothed Template for Focused Ion Beam
Scanning Electron Microscopy Image Stacks. Scientific Reports 10, 2004 (2020)
https://doi.org/10.1038/s41598-020-58736-7

Uwizeye, C., Decelle, J., Jouneau, P.-H., Flori, S., Gallet, B., Keck, J.-B., Bo,
D.D., Moriscot, C., Seydoux, C., Chevalier, F., Schieber, N.L., Templin, R.,
Allorent, G., Courtois, F., Curien, G., Schwab, Y., Schoehn, G., Zeeman, S.C.,
Falconet, D., Finazzi, G.: Morphological bases of phytoplankton energy manage-
ment and physiological responses unveiled by 3D subcellular imaging. Nature

17

https://doi.org/10.1016/bs.mcb.2019.05.001
https://doi.org/10.1016/bs.mcb.2019.05.001
https://doi.org/10.1016/j.dsp.2006.11.004
https://doi.org/10.1016/j.jsb.2008.07.005
https://doi.org/10.1016/j.jsb.2008.07.005
https://doi.org/10.1109/CLUSTER.2014.6968786
https://doi.org/10.1016/j.cmpb.2016.05.008
https://doi.org/10.23919/APSIPA.2018.8659773
https://doi.org/10.1016/j.jsb.2020.107492
https://doi.org/10.1016/j.jsb.2020.107492
https://doi.org/10.1038/s41598-020-58736-7

[24]

[25]

[30]

Communications 12, 1049 (2021) https://doi.org/10.1038/s41467-021-21314-0

Gonzélez-Ruiz, V., Fernandez-Fernandez, M.R., Fernandez, J.J.: Structure-
preserving gaussian denoising of FIB-SEM volumes. Ultramicroscopy 246, 113674
(2023) https://doi.org/10.1016/j.ultramic.2022.113674

Gonzalez-Ruiz, V., Fernandez, J.-J.: Flowdenoising: Structure-preserving denois-
ing in 3d electron microscopy (3dem). SoftwareX 23, 101413 (2023) https://doi.
org/10.1016/j.softx.2023.101413

Farneback, G.: Two-Frame Motion Estimation Based on Polynomial Expansion.
In: Scandinavian Conference on Image Analysis, pp. 363-370 (2003). https://doi.
org/10.1007/3-540-45103-X_50

Bykov, Y.S., et al.: The structure of the COPI coat determined within the cell.
eLife 6, 32493 (2017) https://doi.org/10.7554/eLife.32493

Knott, G., Rosset, S., Cantoni, M.: Focussed Ion Beam Milling and Scanning
Electron Microscopy of Brain Tissue. JOVE (Journal of Visualized Experiments)
53, 2588 (2011) https://doi.org/10.3791/2588

Lucchi, A., Li, Y., Fua, P.: Learning for structured prediction using approximate
subgradient descent with working sets. In: 2013 IEEE Conference on Computer
Vision and Pattern Recognition, pp. 1987-1994 (2013). https://doi.org/10.1109/
CVPR.2013.259

Wietrzynski, W., et al.: Charting the native architecture of chlamydomonas thy-
lakoid membranes with single-molecule precision. eLife 9, 53740 (2020) https:
//doi.org/10.7554 /eLife.53740

18

https://doi.org/10.1038/s41467-021-21314-0
https://doi.org/10.1016/j.ultramic.2022.113674
https://doi.org/10.1016/j.softx.2023.101413
https://doi.org/10.1016/j.softx.2023.101413
https://doi.org/10.1007/3-540-45103-X_50
https://doi.org/10.1007/3-540-45103-X_50
https://doi.org/10.7554/eLife.32493
https://doi.org/10.3791/2588
https://doi.org/10.1109/CVPR.2013.259
https://doi.org/10.1109/CVPR.2013.259
https://doi.org/10.7554/eLife.53740
https://doi.org/10.7554/eLife.53740

	Introduction
	3D Noise filtering with feature enhancement
	Hybrid CPU/GPU implementation
	Results
	Conclusions
	Acknowledgments

