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Abstract

Background and Objective: Focused lon Beam - Scanning Electron Microscopy
(FIB-SEM) allows three-dimensional ultrastructural analysis of cells and tis-
sues at an isotropic resolution of a few nanometers. The technique iteratively
removes a section of the sample with a FIB and takes an SEM image from
the exposed surface. The section thickness is usually higher than the image
pixel size to reduce acquisition time, thus resulting in anisotropic resolution.
In this work, we explore novel interpolation methods along the sectioning
direction to produce isotropic resolution and facilitate proper interpretation
of the FIB-SEM 3D volumes.

Methods: Classical interpolation methods are usually applied in this context
under the assumption that the changes through successive images are rel-
atively smooth. However, the actual 3D arrangement of the structures in
the sample may cause significant changes in the biological features between
consecutive images of the FIB-SEM stacks. We have developed a novel inter-
polation strategy that accounts for this variation by using the Optical Flow
(OF) to estimate it. Next, OF-compensated images are produced by aligning
the spatial regions of the biological structures. The interpolation is finally
applied to these OF-compensated images.

Results: Evaluation of the OF-driven and classical interpolation methods was
carried out with a quantitative study based on Structural Similarity Index
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Measure (SSIM) and a qualitative evaluation based on visual results, us-
ing public datasets and representative anisotropy conditions. The quantita-
tive evaluation demonstrated that the OF-driven interpolation always yields
higher SSIM values, with interpolated images closer to the ground truth. The
qualitative evaluation corroborated the quantitative results and confirmed
that classical interpolation may blur areas with substantial changes between
consecutive images whereas OF-driven interpolation succeeds in providing
sharpness.

Conclusions: We have developed and evaluated an OF-driven interpolation
approach to generating FIB-SEM stacks with isotropic resolution from ex-
perimental anisotropic data. Thanks to the OF, the interpolation adapts to
the rapid variation of the biological structures observed through the images
of the FIB-SEM stack. Our approach outperforms classical interpolation and
manages to produce sharp interpolated views in cases where there are signif-
icant changes between consecutive experimental images.
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1. Introduction

Large volume Electron Microscopy (EM) techniques allow the ultrastruc-
tural analysis of whole cells and tissues in three-dimensions (3D) at the
nanoscale [1, 2]. They make it possible to study the cellular compartments
and their interrelationships in their native spatial context. Thanks to the
recent developments, these EM techniques have matured into essential tools
in cell biology, biomedicine and health research.

FIB-SEM (Focused Ion Beam - Scanning Electron Microscopy) currently
represents the finest of the large volume EM technologies. This technique
proceeds in an automated fashion by iteratively removing an ultrathin sec-
tion of the sample (as thin as 3-10 nm) with a FIB followed by imaging
the freshly exposed surface with an SEM [3]. Afterward, the collected se-
rial images are mutually aligned and stacked to produce a 3D volume (also
known as FIB-SEM stack hereinafter) that is subjected to visualization and
interpretation [1, 4].

FIB-SEM offers the highest resolution of the large volume EM technolo-
gies (up to 3-5 nm) and is the only one that can achieve isotropic resolution
(i.e. section thickness equal to the image pixel size) [3]. Therefore, it has
got a unique ability to visualize samples with a thickness of tens or hundreds
of micrometers at an isotropic resolution of 3-5 nm. A number of recent
breakthroughs in cell biology, neurobiology and biomedicine have made the

most of FIB-SEM [5, 6, 7, 8, 9, 10].

Despite its potential, the FIB-SEM technique is limited by the slow op-
eration of the current devices. This has a direct impact on the acquisition
wall-time and cost, as well as in the instabilities of the imaging conditions
and system reliability [3]. As a consequence, this factor inherently imposes
a limitation in the depth of the sample that can be explored [3]. In practice,
to image the sample as deep as possible in a reasonable time, the section
thickness is set up to typically 2-4x the image pixel size, thus resulting in
stacks with anisotropic resolution [9, 10, 11, 12] (for instance, image pixel
size of 5 nm and section thickness of 20 nm). This anisotropy may hamper
the proper interpretation of the 3D volumes.



Classical interpolation techniques (e.g. nearest neighbor, linear, cubic)
are usually employed to overcome this anisotropy and thus produce FIB-SEM
stacks with isotropic resolution, with linear interpolation being the standard
method in the field [10]. Interpolation is applied along the Z direction (i.e.
section thickness) to equal the resolution in X and Y directions (i.e. image
pixel size). These classical methods are characterized by their simplicity
and assume that the changes of structures in consecutive images are smooth.
They thus neglect the rapid variation of the biological features and their
position perpendicular to the sectioning direction, and this may produce
interpolated images where some features appear blurred.

Recently, deep-learning-based super-resolution techniques have been ex-
plored in this context [13, 14, 15]. These works have demonstrated the need
for sophisticated neuronal network architectures as well as proper image pre-
processing and selection of training data for a successful application to the
problem of anisotropy in FIB-SEM. Even so, the results obtained were simi-
lar to the classical methods [13, 14, 15]. Moreover, additional drawbacks are
the high computational demands required by these approaches and the need
for re-training the networks to be applied to FIB-SEM stacks acquired under
different imaging settings or from different samples. As a consequence, these
methods are not generally used at a practical level, and classical interpola-
tion methods remain predominant in the FIB-SEM field and widespread in
standard software packages (e.g. ImageJ, Fiji, DragonFly).

In this work, we introduce and evaluate a novel approach to interpolation
of FIB-SEM stacks that is based upon Optical Flow (OF). OF is a classical
technique to estimate the motion of objects between consecutive images of
a sequence, with countless applications in video processing and computer
vision [16]. Thanks to OF, our interpolation approach can adapt to the
rapid variation of the biological structures between consecutive images of the
stack, thereby outperforming the classical interpolation methods.



| P

Figure 1: Definition context of the OF. The vector (v,u) connects a group of pixels
associated to the same biological structure across the adjacent images I and Iy 1.

2. Methods

2.1. Optical Flow definition

The concept of OF was conceived to describe the visual stimulus that
allows animals to perceive movements in their surrounding environment. In
the context of digital video, when a scene is captured at different times,
moving (3D) objects are projected into groups of corresponding pixels in the
(2D) images. In general, it is possible to estimate the displacement of the
objects between consecutive frames/images, and this information is known as
the OF [17]. In the FIB-SEM context, we aim to estimate the displacement of
the 2D patterns generated by the 3D biological structures across the images
of the stack.

In an ideal situation, pixels of adjacent images of the stack tend to satisfy
the intensity constancy assumption: the values of the pixels related by the
OF remain constant between the images. This (idealistic) behaviour has
been described in Fig. 1 and is expressed by

Ik+1,y+v,a:+u = Ik,y,x (]‘)

where I is a stack, I is the k-th image of I, I, , is the intensity of the pixel
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with coordinates (y,x) of I and (v,u) is the vector that relates (connects)
the pixels projected by the same structure between the images.

In general, the objective is to find (v, u) that minimizes

Ey,w = S<Ik+1,y+v,z+u> Ik,y,m)? (2>

where s(-,-) is a function that measures similarity between pixels [17]. For
example, if we minimize the squared error, we use

Ey,fr - ||Ik+1,y+v,m+u - Ik,y,r| |27 (3>

or even better, considering a neighborhood defined by a window W

Epo= > eoiysvmsn — oyl (4)

(v, )EW

increasing the robustness to noise but also decreasing the structural accuracy
of the OF field, by introducing an implicit smoothing factor that depends on
the size and the shape of W.

Unfortunately, we cannot determine (v, u) using only one equation (there
are many possible pairs of values for v and v that satisfy Eq. 4). This issue is
known as the aperture problem and makes the OF computation ill-posed [17].
For this reason, the different OF estimators that have been developed use
some extra constraints to address this problem.

2.2. Farneback OF estimator

The Farnebéck’s estimator [18] minimizes Eq. 4 in a quadratic polynomial
domain, where each pixel’s neighborhood is modeled by a quadratic function
f(x) =xTAx +b™x + ¢, (5)

where x = (y,x) is the pixel, -T represents the transpose of a vector or a
matrix, A is a (symmetric) matrix, b a vector, and ¢ a scalar. The polynomial
coefficients A, b and ¢ are estimated in terms of normalized convolution [19]
with the basis functions

{1, 2,9y, 2% y*, 2y}, (6)
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obtaining

f(X) =71+ 7rox + 13y + 7"4332 + r5y2 + regxy (7)
that is related to Eq. 5 as
_ _ T2 |y 76/2
c-rl,b—[TJ,andA—{TG/Q 7’5] (8)

The size of the sampled convolution kernels (the so-called applicability
that usually is a Gaussian filter [18]) determines the scale of the structures
captured by the polynomial expansion. In such domain, if we have

filx) =xTA1x + b;"x + ¢4, (9)
and assume a new signal

fo(x) = xTAox + by™x + ¢, (10)
resulting of a global displacement d with respect to f;

fx) = filx—d)
= (x—d)TAj(x—d)+b;"(x—d) + ¢ (11)
= XTA1X + (bl — 2A1d)TX + dTAld + ble + ¢y,

then we obtain that [18]

A2 = Al, (12)
by = by — 2A,d, (13)
Co = dTAld — ble + ;. (14)

The displacement d can be determined by Eq. 13, provided that A is non-
singular, using [18§]

1
d= —§Af1(b2 —by). (15)

Since a whole image is unlikely to be modeled by a single polynomial
and the displacement is expected to vary spatially across the image, the
derivation requires to be further elaborated. For this reason, the global poly-
nomials in Eqgs. 9 and 10 are replaced by local polynomial approximations,
thus obtaining [18]

filx) =xTA;(x)x + bT(x)x + ¢4 (16)
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and
fa(x) = xTAs(x)x + b T (%)X + co. (17)

As we can see in Eq. 12, Ay(x) = A;(x), but in practice these matrices
are only similar, and it is more robust (against noise) to use

A1 (X) + AQ (X)

A(x) = . . (18)

Now, if we introduce
1
Ab(x) = —§(b2(x) - bl(X))a (19)
then, using Eq. 13, we obtain the primary constraint
A(x)d(x) = Ab(x), (20)

where d(x) is a spatially varying displacement field. Notice that Eqgs. 1 and
20 are equivalent (relates the same information but in different domains) and
therefore, we still have an undetermined system with two unknowns (d(x))
and only one equation. To solve this, let us assume now that the displacement
field in Eq. 20 is slowly varying (the so-called motion smoothness assump-
tion used in most OF estimators) and consider a neighborhood defined by a
window W, thus introducing an implicit smoothing factor and making the
algorithm more robust to noise. Now we minimize

> w(Ax)||A(x + Ax)d(x) — Ab(x + Ax)|?, (21)

where Ax denotes the neighborhood of x and w(Ax) describes the applica-
bility, typically a 2D Gaussian function covering the neighborhood window
W. The minimum is obtained for

-1
d(x) :( 3 w(AX)ATA> 3" w(Ax)ATAD, (22)
AxeW AxeW
or by simplifying the notation

d(x) :( 3 wATA>_1 Y wATAD. (23)

AxXeEW AxeW



At this point, we can still improve the robustness if the displacement field
is parameterized according to the quadratic motion model [18]:

d.(y,x) = a1 + asx + azy + arx® + agwy,

24
dy(y, z) = a4 + a5z + agy + arzy + agy?, (24)
that can be written in matrix form as
d = Sp, (25)
where ,
{1z y 00 0 2° wxy
S_{OO()lxyxyyz’ (26)
and
p= [al ay as a4 as ag Qr ag}T ) (27)
Substituting in Eq. 21, we obtain the weighted least squares problem
> wil|A;S;p — Ab||%, (28)

where ¢ indexes the coordinates in a neighborhood. The solution turns out
to be [1§]

~1
Therefore, the Farnebéck estimator reduces to Eqgs. 25, 26 and 29.

Practical implementations of the Farneback estimator involve multi-scale
estimation of the OF [18], as we have used in this work, by using an approach
similar to the Gaussian pyramid [20]. The method obtains an initial estimate
of the displacement field by working at a coarse scale. The displacement
estimate is then propagated through finer scales to progressively refine the
estimates and increase the accuracy. The multi-scale implementation makes
use of the estimated displacement field at the present scale, a(x), as a priori
displacement in the next scale by replacing Eqs. 18 and 19 by

_AX) + As(x)

A(x)

and



where .
X =x+d(x). (32)

The basic parameters of the Farneback OF estimator are the scale levels
involved in the multi-scale implementation and the size of the neighborhood
window W. The former is related to the search area and the magnitude of
displacements. The use of coarser scales allows the algorithm to handle large
displacements but with potential risk of decreasing the accuracy. The latter
is related to the noise and the size of the biological structures of interest.
The larger the window size, the more robust the algorithm is against noise,
but at the expense of structural accuracy if the window does not properly fit
the size of the biological structures.
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Ia(z—l)

Figure 2: Linear and cubic interpolation without OF (a = 2). Interpolation is carried out
along the Z-axis (dotted line) ignoring the potential variation in location of the biological
structures (grey circles).

2.3. Linear and cubic interpolation (without OF)

Given a set of known knots (evenly spaced points), interpolation is the
task of finding an arbitrary continuously defined function that crosses through
the knots and that exhibits some required properties, such as smoothness [21].
A way of building such function is through a discrete sum of weighted and
shifted functions derived from a basis (interpolation kernel) w(-), performing
a low pass filtering (and therefore, a discrete convolution between the knots
and the sampled version of the basis) applied to the knots [22].

The kernel of linear interpolation is defined by

: 1— if |z] <1
whnear(x) — T 1 |I’ . ) (33)
0 otherwise,
while cubic interpolation is determined by the piece-wise polynomial
2—a)lz]*+ (a—=3)|z]*+1 if |z] <1,
W (z,a) = { —alz|® + 5alz|? — 8alz| + 4a if 1 < |z| < 2, (34)
0 otherwise,
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that can be classified as a spline function, where z € R represents the signed
distance between the reference knot and the interpolated point, and the pa-
rameter a adjusts the steepness of the spline. In all our experiments a = 1/2
(configuring a Catmull-Rom spline [21]) to get a trade-off between smooth-
ness and sharpness in the interpolations [23]. Therefore, we define

w(e) = wg* () = w(2,1/2). (35)

In the case of conventional linear interpolation (i.e. without OF) the
selected image-knots (see Fig. 2) are {I(;44 for i = 0,1}, where I is the
anisotropic stack, o € N is the interpolation step size, and z € N is the
index of the image in I, but considering consecutive indexes. For cubic
interpolation, the set of image-knots becomes {I,(.44 for i = —1,0,1,2}.

Considering Eqs. 33 and 34 and the reference image-knots, the interpo-
lated images are then calculated, with linear and cubic interpolation respec-

tively, as:
~linear

Iaz+j - (1 - BO)Iaz + 60106(2-1-1) (36>
and .
L5 = 370 w(Bi) o, (37)
with j=1,..., (o — 1), and where
(az+j)—alz+i)  j—oi
a Ca

fi =

(38)

Notice that in the case of the cubic interpolation, the term w(f;) can be
recognized as the contribution (to the interpolated image) of the i-th image
indexed in the corresponding image-knots set. In the linear interpolation, the
contributions have been directly expressed in terms of §y by “hard-coding”
Eq. 33 into Eq. 36.

Finally, we want to highlight that because we are interpolating (not per-
forming a regression), it holds that

Iaz - Iaz7 (39)

i.e., all the images of the anisotropic stack (I) are part of the isotropic one
(I), and in between of each pair of those images with indexes az and a(z+1),
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I[x(z+2)

Ia(z—l)

Figure 3: Linear and cubic interpolation with OF (a = 2). In essence, images are trans-
formed according to the estimated OF (arrows) to compensate for the variation in location
undergone by the biological structures (grey circles), followed by interpolation along the
Z-axis (dotted line).

a total of @ — 1 interpolated images are computed with (isotropic-domain)
indexes az 4+ 1,az+2,...,a(z + 1) — 1. This idea has been shown in Fig. 2
where for simplicity a = 2 and therefore, there exists only one interpolated
image in the middle plane between each possible pair of original ones.

2.4. OF-driven linear and OF-driven cubic interpolation

Most biological structures present in the FIB-SEM stacks produce highly
correlated patterns in neighboring images. These patterns change slightly
their position across the XY plane through the images of the stack, according
to the real 3D arrangement of the biological structures in the sample. If these
variations in the positions of the patterns are not taken into consideration
during the interpolation, the resulting images may turn out to be blurred.
Fig. 2 illustrates the interpolation of image iazﬂ from the corresponding
image-knots. The small black square in that image denotes a specific pixel
that belongs to the pattern associated with a particular biological structure
(represented by a grey circle) that should appear, for example, at the az + 1
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position of the Z-axis. Conventional interpolation, either linear or cubic as
described in the previous section, ignores the variation of the position of that
structure through the image-knots. The pixels involved in this interpolation
are indicated by the dotted line running along the Z-axis. As a result, the
biological structure will appear blurred in the interpolated image in.

We have developed a new strategy to improve the interpolation of FIB-
SEM stacks. The method consists of estimating the apparent motion un-
dergone by the biological structures through adjacent images of the stack,
followed by the alignment of the spatial regions of such structures so as to
produce OF-compensated image-knots. Afterward, interpolation is applied
as described in the previous section to produce the interpolated images of the
isotropic stack from the corresponding knots. Therefore, we rely on OF to
estimate the displacement of the structures and conduct the alignment that
compensates for it. Fig. 3 illustrates our approach. Each original image-knot
is transformed according to the estimated OF, so the spatial regions corre-
sponding to specific biological structures are brought in register (denoted by
the arrows). As a result, the interpolation along the Z-axis (represented by
the dotted line) ensures the involvement of the proper pixels so as to improve
the quality of the interpolated images and attenuate potential blurring.

We have used Farnebéck’s algorithm described in Section 2.2 to compute
the displacement field d(x) (or simply d in the rest of this section, see Eqs. 23
and 25) between the images in the anisotropic stack I. The reason is because
it offers excellent results [18], requires modest computational resources, and
it is already implemented in OpenCV!, though several other alternatives
for dense OF exist (such as Dense Pyramid Lucas-Kanade [24] or PCA-
Flow [25]).

Specifically, our OF-driven linear and cubic interpolations can be math-
ematically expressed as

~linear OF

Iaz—i—j = (1 - ﬁO)ia(erl) + 501042 (40)

https://docs.opencv.org/4.5.3/de/d9e/classcv_1_1FarnebackOpticalFlow.
html
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and T
T OF = S w(B1ager, &)

where 3; and w(;) were defined in the previous section.

It can be noticed that these equations are derived from the conventional
interpolation, Eqs. 36 and 37, with the important difference that they are
applied to the OF-compensated image-knots

a(z+2) Ha(z 1)

Loy = ((1F )(Ta=12))

i (| | a(z—i—l)—)az) )

az - az+1

“ az—a(z+1) <42>
Loty = ([P0l d) )E az);

~ of —a(z+2)

Ia(z+2) = ( lﬁ 1 d )(Ia(z—l) )) )

where I; is the OF- compensated version of the original k-th image- knot Ik

after transformation with the corresponding (scaled) displacement field d

The displacement fields are scaled (see factors ‘6—3| or |f.| in Eq. 42) in or-
der to generate the OF-compensated image-knots according to the distances
between such images and the interpolated one with index (az+j) (see Fig. 3).

15



3. Results

3.1. Quantitative Evaluation

3.1.1. Datasets and metric for the evaluation

To conduct the quantitative evaluation we used two public datasets from
different samples and acquired under different imaging settings. First, we
used a stack from the CA1 hippocampus region from rat brain acquired with
a Zeiss NVision 40 FIB-SEM microscope using an isotropic pixel size of 5 nm
(i.e., section thickness and image pixel spacing of 5 nm) [26]. The dataset
is often used to assess automated segmentation methods [27] and is publicly
available?. The second dataset was a stack from a worm Platynereis dumer-
iz, an animal typically used as a model organism in cell biology laboratories,
acquired with a Zeiss Crossbeam 540 FIB-SEM microscope using an isotropic
pixel size of 10 nm [28]. The dataset is deposited at the Electron Microscopy
Public Image Archive (EMPIAR) [29] and accessible with ID 10310%. These
original datasets are massive in size (nearly 2000 images). To reduce the
computation costs and be able to assess the quality for individual images,
the evaluation was restricted to substacks of 150 images. These datasets are
denoted by EPFL and EMPIAR-10310, respectively, hereinafter.

The evaluation of the interpolation methods was carried out as follows.
First, anisotropic acquisition conditions were simulated by subsampling the
stacks in the Z direction. Three anisotropy conditions were tested: section
thickness equal to 2x, 4x and 8x the image pixel size. The subsampling
then consisted in taking images from the original stacks at steps of a = 2, 4
and 8, respectively (i.e. taking one of every 2, 4 and 8 images, respectively),
which acted as reference image-knots. Second, the interpolation methods
were applied to the simulated anisotropic stacks in order to generate the
missing images and thus produce isotropic stacks. Finally, the interpolated
images were compared with the real images acting as ground truth.

The quantitative assessment was performed using the Structural Similar-

’https://www.epfl.ch/labs/cvlab/data/data-em
Shttps://www.ebi.ac.uk/empiar/EMPIAR-10310
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ity Index Measure (SSIM) to compare the interpolated images with the real
ones. The SSIM is a widespread metric that measures the similarity between
two images based on structural information and by considering the pixel in-
terrelationships in local regions [30]. The procedure sweeps a sliding window
over the image space to confine the calculation of the SSIM metric to the
local neighborhood. As a result, a SSIM map is obtained that describes the
similarity across the image space. A single overall SSIM index of the whole
image is then obtained by averaging the local SSIMs. SSIM values range
from -1 to 1, with 1 indicating a perfect match.

The evaluation included the two OF-driven interpolation methods pre-
sented in this article, namely linear OF and cubic OF. For comparison, stan-
dard strategies that rely on classical linear and cubic interpolation were also
included. The four methods were applied to the two datasets under the three
anisotropy conditions (steps of & = 2, 4 and 8 along the Z direction).

To tune the Farneback OF estimator, we conducted a series of tests and
determined the parameters that were valid for all datasets. Specifically, we
used three scale levels for the multi-scale OF approach and a neighborhood
window of 129x129 pixels.

3.1.2. Results from the quantitative evaluation

Figures 4 and 5 show the SSIM values obtained for the individual in-
terpolated images of the two tested datasets, EPFL and EMPIAR-~10310,
respectively. SSIM curves exhibit higher values at lower steps (i.e. smaller
anisotropy, with a closer distance between the images serving as reference
knots). Therefore, green (o = 2), red (o = 4) and blue (o« = 8) curves
obtained using a specific interpolation method show decreasing SSIM values.
The plots clearly demonstrate that OF-driven interpolation methods (pre-
sented with solid curves) significantly improve the quality of the interpolated
images compared to the classical ones (dotted curves). The increase in SSIM
is similar regardless of the interpolation strategy, either linear (top panels in
the figures) or cubic (bottom panels). It is a remarkable fact that OF-driven
interpolation at higher steps may approach, or even outperform, the classi-
cal methods at lower steps. This effect is seen, for instance, in Fig. 4 with
OF-driven methods applied at step a = 4 (solid red curve) outperforming
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EPFL EMPIAR-10310
a=2 a=4 a=38 a=2 a=4 a=3~8
10 nm 20 nm 40 nm 20 nm 40 nm 80 nm

linear 0.5948  0.5570 0.4705 | 0.5627 0.4951 0.3731
cubic 0.5829 0.5508 0.4714 | 0.5567 0.4950 0.3750
linear OF | 0.6323 0.6030 0.5176 | 0.5839  0.5182  0.3944
cubic OF | 0.6275 0.6033 0.5225 | 0.5853 0.5232 0.3988

Table 1: Average SSIM values.

classical ones at o = 2 (dotted green curve).

Figures 4 and 5 also show that the SSIM values tend to vary slightly
across the images of the FIB-SEM stack when the anisotropy is relatively
low (e.g. step of a = 2). However, this behavior changes for larger steps and
significant oscillations can be observed at o« = 8, where local SSIM valleys are
found at the halfway point between consecutive reference images. In these
situations, OF does not manage to attenuate the oscillations but the overall
improvement is still notable as the whole SSIM curve is raised throughout
the entire range.

Table 1 presents the global SSIM values calculated by averaging the in-
dividual SSIM values in Figs. 4 and 5. The columns of the table label the
anisotropy conditions (o = 2,4,8) and, for completeness, the distance be-
tween the knots in the biological sample (in nm) is also included. This table
summarizes the overall behavior observed in Figs. 4 and 5, further substan-
tiating the superiority of OF-driven interpolation methods with respect to
the corresponding classical ones, either linear or cubic. For instance, at step
a = 4, classical interpolations produce SSIMs around 0.55 and 0.49 for EPFL
and EMPIAR-10310 datasets, respectively, whereas their OF-driven versions
improve them to around 0.60 and 0.52. Moreover, this table also corrobo-
rates that (either classical or OF-driven) both linear and cubic interpolation
behave similarly, with linear somewhat better than cubic at lower steps.

Figures 6 and 7 visually illustrate the benefits of using OF-driven interpo-
lation methods on the two tested datasets. Isotropic stacks were constructed
by assembling the interpolated images together with the reference knots.
Those figures present two selected areas of the isotropic stacks and compare
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Figure 4: SSIM curves obtained from EPFL dataset.
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them to the original stacks. For conciseness, only the results obtained un-
der the anisotropy condition of v = 4 are presented. Regions of particular
interest are marked with arrows. The figures clearly show that features that
rapidly vary along the Z-direction (i.e. the sectioning direction) are the most
benefited from the OF-driven interpolation. Thus, the effects are especially
noticeable at membranous structures running in diagonal in the X7 planes,
as pointed by arrows in the figures. In these situations, classical interpola-
tion, either linear or cubic, may produce apparent stair-like effects in the XZ
planes (Figs. 6 and 7) and may exhibit significant blurring (see Fig. 7) in the
interpolated images. In contrast, OF-driven methods produce sharp results,
with interpolated images approaching the original ones and better XZ planes
in the resulting isotropic stack. These figures also demonstrate from a visual
point of view that there is a negligible difference between linear and cubic
interpolation (either classical or considering OF).

Figure 8 presents SSIM maps corresponding to the images from which
the areas in Fig. 6(top) and Fig. 7(top) were selected. These maps indicate
that high SSIM values come from biological features that stand out from
the background, such as membranes, and suggest that these features play an
important role in guiding the OF-driven methods. Notice that these methods
exhibit high SSIM values at the membranes and their edges.
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original linear linear OF cubic cubic OF

Figure 6: Isotropic stacks interpolated from the EPFL dataset under @ = 4 anisotropy
condition. The leftmost column shows the original stack whereas the other columns present
the results from the different methods. Two selected areas of the stack are presented at
the top and bottom rows. In all cases, selected XY and XZ planes of the stacks are shown,
whose correspondence is denoted by a small yellow point and arrows. The arrows also
point to areas where the difference between the methods are noticeable. Bar: 200 nm.
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original linear linear OF cubic cubic OF

Figure 7: Isotropic stacks interpolated from the EMPIAR-10310 dataset under o = 4
anisotropy condition. Two selected areas are presented (top and bottom rows) from the
original stack (leftmost column) and from the interpolation methods. The presentation of
the results follows the same convention as in Fig. 6. Bar: 500 nm.
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linear linear OF linear linear OF

Figure 8: SSIM maps from EPFL and EMPIAR-10310 datasets. SSIM maps from images
interpolated with linear and linear OF methods for both datasets (left and right, respec-
tively) are shown. These images have indices 122 and 130 from the corresponding stacks,
and their overall SSIM values are available in the curves presented in Figs. 4 and 5, re-
spectively. Black squares mark the selected areas presented in Fig. 6(top) and Fig. 7(top),
respectively. Bars: 1 pm.

3.2. Application to experimental anisotropic datasets

In order to evaluate the performance of the methods on an experimental
dataset with an anisotropic resolution, we used a stack from human fibrob-
last cells acquired with a Zeiss Crossbeam 550 FIB-SEM microscope under
cryogenic conditions using an image pixel size of 10.5 nm and a section thick-
ness of 21 nm [10], which correspond to a step o = 2. This dataset, publicly
available at EMPIAR with ID 105154, is representative of the state-of-the-art
FIB-SEM instruments, capable of working under cryogenic temperature to
preserve the samples in near-physiological conditions. These data are char-
acterized by a low signal-to-noise ratio and low contrast. The OF estimator
was configured with the same parameters as in the previous section.

Figure 9 presents the effects of the interpolation methods with this dataset.
As described previously, isotropic stacks were assembled by combining the
experimental and the interpolated images. A specific area containing a mi-
tochondrion (yellow point at the XY planes) close to the nucleus of a cell
(bottom-right corner of the panels) is shown. The mitochondrion, as well as
other nearby features, look blurred with classical interpolation (linear, cu-

‘https://www.ebi.ac.uk/empiar/EMPIAR-10515

24


https://www.ebi.ac.uk/empiar/EMPIAR-10515

bic). In addition, the stair-like effects reported previously are also observable
at the nucleus membrane in the XZ planes (indicated by an arrow). However,
both OF-driven methods succeed in producing sharp interpolated images, as
reflected in the well-defined mitochondrion and surrounding area. Figure 9
also confirms that linear OF and cubic OF behave similarly.

Figure 10 illustrates how linear OF outperforms the classical linear inter-
polation on another area of the stack around a mitochondrion. Top panels
show two original experimental images serving as reference knots for the
interpolation (denoted by az and a(z + 1)). These images are 21 nm dis-
tant from each other. Biological structures may change importantly within
this distance, as seen in the large mitochondrion in particular. As a result,
the classical methods yield a blurred interpolated image (middle-left panel)
whereas OF-driven ones manage to produce a sharp mitochondrion (middle-
right) that represents an intermediate view between the reference knots. For
illustration purposes, the displacement fields for the calculation of the linear
OF result, as described in Section 2.4 and Figure 3, are shown at the bottom.
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linear linear OF

cubic cubic O

Figure 9: Isotropic stacks interpolated from the EMPTAR-10515 dataset. This dataset was
acquired under anisotropy conditions of o = 2. Selected XY and XZ planes from an area
of particular interest are presented, whose correspondence is denoted by a small yellow
point and arrows. The arrows also point to areas with remarkable difference between the
methods. Bar: 500 nm.
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Figure 10: Interpolated images from the EMPIAR-10515 dataset. Top: two consecutive
experimental images of the original stack acting as reference knots. Middle: results of
the interpolation from the above two images with classical linear interpolation (left) and
linear OF (right). Arrows point to two mitochondria (large and small) where the effects of

the interpolation are dramatically different in linear OF. Bottom: Estimated displacement
az—a(z+1) a(z+1)—az
fields d and d (see Section 2.4 and Figure 3) involved in the calculation

of the OF-compensated result (middle-right panel). Bar: 500 nm.
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4. Discussion and Conclusion

In this work, we have presented an OF-driven interpolation approach
to generating FIB-SEM stacks with isotropic resolution from experimental
anisotropic data. Thanks to the OF, the interpolation adapts to the rapid
variation of the biological structures observed through the images of the
FIB-SEM stack, which is caused by their real 3D arrangement in the sample.
The performance of our approach has been demonstrated with quantitative
(in terms of SSIM) and qualitative evaluations. Our approach outperforms
classical interpolation and manages to produce sharp interpolated views in
cases where there are significant changes between consecutive experimental
images. We have implemented and evaluated two strategies, OF-driven linear
and OF-drive cubic, and found no remarkable differences between them.

The method works particularly well under the current acquisition proto-
cols in FIB-SEM, involving an anisotropy of a = 2 or o« = 4 (gaps between
experimental images typically in the range of 10-20 nm), resulting in isotropic
stacks with relatively homogeneous SSIM values. These results definitely
support the use of anisotropic data acquisition protocols, which help reduce
time, cost and system instabilities, complemented with OF-driven interpola-
tion to yield isotropic FIB-SEM stacks. We also tested an extreme condition
of @ = 8, which may resemble the experimental situations in Serial-Block-
Face SEM (SBF-SEM), other type of large volume EM with gaps typically
larger than 50 nm [1]. Although our method also outperforms classical in-
terpolation in these extreme situations, the large SSIM oscillations of the
resulting isotropic stacks suggest that the anisotropy may be excessive and
that the gaps between the reference images are too large to be filled with
homogeneous quality.

One important feature of our approach is the versatility to be applied
straightforwardly to stacks of any origin. This is an important advantage
since (a) the biological specimens being imaged with FIB-SEM, (b) the sam-
ple preparation techniques and (c) the image acquisition conditions may be
highly diverse, as shown here with three representative datasets. In contrast,
this fact may turn out to be a great disadvantage for recently proposed deep-
learning-based methods because training for the specific target data would
always be required [13, 14, 15].
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Another advantageous attribute of our approach is its simplicity. The
method has two main basic parameters associated to the OF estimator,
namely the scale levels and the neighborhood window. They are related
to the search area and the size of the biological structures of interest, respec-
tively. The fact that these parameters are so well-defined facilitates their
tuning for the specific study. In this work, we did not observe significant
variation in the performance of the method with the parameters, though this
may be certainly case-dependent. Our future plans include the development
of strategies to optimize the OF parameters for the particular dataset under
consideration. This optimization would open up the possibility of gener-
ating fine-tuned isotropic FIB-SEM stacks from anisotropic data in a fully
automated fashion without user intervention.
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