A 10Ssy data compressor based on the L4LW
algorithm.”

V.G. Ruiz and I. Garcia
Dept. Arquitectura de Computadores y Electrénica.
University of Almeria, 04120-Almeria, Spain.

Abstract

LZW (Lempel-Ziv Welch) is a lossless data
compression algorithm which eliminates
the intercharacter redundancy by search-
ing linear patterns in an input data stream.
Our proposal is a variation of the origi-
nal LZW encoder which performs a fast
lossy data compression by the use of a
quantized hashing search technique. For
two-dimensional data streams (images) a
Recursive-Z Ordering is proposed.

1 Introduction

Data compression is the process of elimi-
nating or reducing the redundancy in the
data representation in order to achieve sav-
ings in storage and communication costs.
Data compression techniques can be clas-
sified into two categories: lossless and lossy
schemes. Using lossless methods, the ex-
act original information is obtained while
for lossy schemes a close approximation of
the original information can only be recov-
ered. Lossless algorithms can be used to
encode any source of information, from a
text data file to a video sequence, while

*This work was supported by the Ministry of
Education of Spain (CICYT TIC96-1125-C03-03
and CICYT TIC96-1259-E)

lossy algorithms can only be used to com-
press raster data, such as sampled sound,
raw images or video. The choice of a data
compressor category (lossless or lossy) de-
pends on the application context. For in-
stance, lossless methods are appropriate
for specialized applications such as medical
imaging or satellite photography where re-
liability of the image reproduction is a crit-
ical factor. On the other hand, lossy com-
pression methods are useful in applications
such as telephone transmission or digital
television, for which better compression ra-
tios are obtained but at the price of paying
a loss of i ormation.

LZW (Lempel-Ziv Welch) is a lossless
data compression algorithm which elim-
inates the intercharacter redundancy by
searching linear patterns in the input data
stream. Typical applications based on
LZW are the standard compress utility
of UNIX and the GIF image format [1].
LZW works by replacing an occurrence of
a group of bits in a piece of data with ref-
erence to a previous occurrence in the set
of no compressed data [6]. The LZW en-
coder [4] makes use of a string table to
search for an input string of characters w.
The source of the uncoded characters is
named the data stream. In each itera-
tion, the encoder concatenates the w string
and the next input character £, building

P1ooslll COUc W L0 Lo COUC suicalll | Cll-
coder’s output) and makes w < k. Oth-
erwise, the encoder makes w < address of
(w, k) and tries with the next input char-
acter. The beauty of LZW scheme consists
in the decoder only needs the compressed
code stream to rebuild the string table and
the original data stream.

The harder work for the encoder is the
search for a string (w, k) in the string ta-
ble. This task can be performed by a bi-
nary search [5] or through hashing. The
binary search is the optimal solution for
obtaining the best compression ratios (see
equation 1) while Hashing is faster but ob-
taining worst compression ratios depend-
ing of the collision ratio. However speed
up and C'R for the hashing search will de-
pend on the choice of the hash function.

Our proposal is a variation of the orig-
inal LZW encoder. In order to reach a
better compression ratio it performs a fast
lossy data compression using a approxi-
mate but fast hashing search technique.
These approximate searches consist in a
quantization of the searching key in the
string table. It will be called Quantized
Hashing Search (QH) and described in sec-
tion 2. On the other hand, the decoder is
the typical LZW decoder, with no varia-
tions.

Intended to eliminate redundancies due
to the correlation between neighbor data
for two-dimensional data (images), a new
ordering of the input data stream is pro-
posed in our implementation. It is called
recursive-Z Ordering and its main advan-
tage consists in the reduction of some kind
of artifact appearing in the standard Row
Ordering. It works in a similar way to the
well known 8 x 8 Zig-Zag Ordering [2]. The
recursive-Z Ordering is described in sec-
tion 2.

LAVY alg0UL1UI al© S11OWIL. UullCulOlls uscd
in the evaluation of our proposal are the
Compression Ratio (CR) and the Signal-
to-Noise Ratio (SNR) defined as:

_ Size(r) — Size(z)
Ch= Size(x)

x 100 (1)

Z:Size(m) 72

SNR =10 xlo izl i 2

s S (25 —)2)
where z and z are the original and com-
pressed data streams, respectively, and y
is the restored (compressed and uncom-

pressed) data stream.

2 Software implementa-
tion

The LZW encoder is a greedy algorithm
which in every iteration process a input
character, so, the complexity of the en-
coder is linearly dependent of the size of
the input data stream.

The main task during an iterative step
is the search for a pair (w, k) in the string
table. Obviously, the choice of the search-
ing algorithm rebounds directly on the ex-
ecution time of the encoder. The faster
alternatives to performs the search are:

Binary search is the most suitable
when the size of the string table is small.
The binary search shows a complexity of
O(log,(N)), where N is the number of
items stored in the search tree (see fig-
ure 2). The main advantage of this scheme
is the optimal exploitation of the reserved
memory for the string table. This is be-
cause of all the codes in the string table
are stored in a block of consecutive cells.

Hashing is the fastest scheme to find
a pair (w,k) in the string table. Theo-
retically, most of the times, a pair can be

o1ULS alc© allOWwed. A sSUubDOpULliilal €XAPIO1ILA=
tion of the string table is made; i.e. the
string table is almost a sparse table. This
problem causes longer code streams than
that obtained by the binary search. There-
fore, an important aspect is the selection of
the particular hash function which trans-
forms the item to be searched in an entry
of the hash table. This function should
spread the keys along the hash table uni-
formly and must be fast [6]. In case of
the hash function doesn’t find the correct
pair, it is said that a collision problem has
appeared. To overcome a collision problem
two options can be tried: (a) to look for an
alternative entry in the string table using
linear probing, clustering, increment func-
tions, etc [3], but spending extra time. (b)
the dumb alternative: if a collision exists,
it can be supposed that the pair (w, k) is
not in the string table and an output code
will be sent. For this reason, in order to
minimize the size of the output code it is
very important to minimize the number of
collisions by the selection on an adequate
hash function. The hashing function for
our implementation is:

hash —w & (k< (W—8)) (3)

where W = log,(string table size).
Quantized hashing is the new char-
acteristic of the our lossy LZW algorithm
and consists in searching for a pair (w, k)
using the most significant bits of the pair
only. Usually, in 8-bit compressions w is
a 16 bits unsigned integer and k is a 8 bit
character. The problem of finding the pair
(w, k) is similar to that of searching for a
number w * 256 4+ k. It can be seen that
w codifies the string of characters which
has been recognized previously. Obviously,
we must find the entry in the string table
which contains the suitable w component,

Ltalll LO ODLalll a4 €Ad4dUL SCalCll 111 LC SLLlE
table because it only represents the last in-
put character of the character stream. To
perform an approximate search of the bi-
nary number w * 256 + k, we can despise
the lower significant bits of k. It produces
a minimal distortion for the search. The
equation used to perform the approximate
search is the next quantized hash function:

hash + (w < P)|(k > (8 — P)) (4)

where P is the number of bits retained in k.
The number of output codes is small and
higher compression ratios can be reached.

In addition to the searching method, it
is important to analyze the criteria used in
the selection of the size of the string ta-
ble and the usefulness of using a variable
output code size. It must be taken into ac-
count that the memory of any computer
is finite as well as that the efficiency of
the memory hierarchy is better for smaller
data structures. Both aspects will rebound
in the encoder execution time. For exam-
ple, for a hashing search with no collisions,
any entry to the string table can be found
by one single access. Depending on its size
the string table could be kept on the cache,
main or secondary memory. Therefore the
smaller the string table the shorter the ex-
ecution time will be.

Related to the output code size, it must
be taken into account that computers eas-
ily manage bytes or words but it spends
extra time in computations on codes whose
lengths are not proportional to 8 bits.
However in order to reach a better com-
pression ratio the output code at any time
must be as small as possible and therefore
the use of a variable output code is an im-
portant matter. It seems to be worth the
effort of using a variable output code size
and so to get a better CR.

T [eelete] [sielele]

LEVEL O LEVEL 1 Z-order

Figure 1: The Z-order of a squared image
with 4 x 4 pixels

Finally, in our implementation of the
LZW, an ordering of the input data stream
called Recursive-Z Ordering has been im-
plemented as well as the well known 8 x 8
Zig-Zag Ordering (used in the JPEG com-
pression standard) and the natural Row
Ordering. The use of these reorderings will
be useful only to compress two-dimensional
array of data. The usefulness of a Zig-Zag
Ordering or Recursive-Z Ordering is not
only due to the compression ratio is slightly
improved but also because they avoid some
kind of artifacts appearing in lossy com-
pressors that make use of a Row Ordering
of the input data stream. In table 1 some
results related to this topics are shown.

The Recursive-Z Ordering of a image di-
vides the image in four squares of equal
size and run the blocks following a Z shape.
It is applied recursively, until every block
only contains one pixel. An example of
this recursive procedure is shown in the fig-
ure 2.

3 Evaluation

This section shows the compression mea-
surements tested for an image (lena) us-
ing several values for the string table size,
the three ordering schemes described above
and several levels of our approximated
hash search. Figure 2 shows the compu-
tation time for the three implementations
of the LZW encoder (using binary search,
hashing, and quantized hashing) as a func-

0.8 6—o QH - LZW B
3 53— Binary search LZW
2 &—= Hashing LZW
2
2 06
£
0.4
0.2 L L L

0 20000 40000 60000
String table size (entries)

Figure 2: The search complexity (LZW)

tion of the string table size (the range of
the string table size is relatively small). It
can be seen that QH-LZW is the faster so-
lution for large string tables.

As an example of our results, in table 1
some values of CR, SNR and time are
shown. It is clear that the compression
ratio (CR) using QH-LZW with P=7 is
much better than that obtained for UNIX
compress and at the same time, it keeps a
very high level for the SNR. Also, it can
be seen that the smaller values of P the
better C'R and the faster compression are
got. Nevertheless values for SN R decrease
as the CR parameter increases. Also in
table 1 it can be seen the slightly improve-
ments introduced by the Recursive-Z (R-Z)
Ordering compared to the 8 x 8 Zig-Zag (Z-
Z) and Row Ordering (R-O), however the
SNR and time are similar.

Finally figure 3 is an example of the com-
pressed and uncompressed image of lena
using the quantized hashing LZW with
P=3.

Figure 3:
bits/pixel, SNR = 53.5dB (P=3).

Compressed ’lena’ at 3

References

1]

2]

3]

[4]

[5]

[6]

(c) Compuserve Incorporated. Graph-
ics Interchange Format (GIF) Specifi-
cation, June 15, 1987.

Gregory K. Wallace. The JPEG Still
Picture Compression Standard. IEFEE
Transactions on Consumer Electronics,
December 1991.

Robert L. Kruse - Bruce P. Leung - Clo-
vis L. Tondo. Data Structures and Pro-
gram Design in C. Prentice-Hall, 1991.
ISBN: 0-13-726332-5.

Terry A. Welch. A Technique for High-
Performance Data Compression. IEEE
Computer, pages 8-19, June 1984.

V. G. Ruiz, I. Garcia. Una Imple-
mentacion del algoritmo de compresién
Lempel-Ziv Welch. In J. M. Troya
Linero y C. Rodriguez Leon, editor, Ac-
tas de I Jornadas de Informdtica, 1995.

Williams, R.N. An extremely fast Ziv-
Lempel data compression algorithm.

€, pPagts JLL/1 1, DHOWDLU, Ul,
USA, 8-11 April 1991. IEEE Comput.
Soc. Press, Los Alamitos, CA, USA.

Table 1: Comparison of some algorithms
based on LZW and our approach for sev-
eral values of the quantization parame-
ter. Results have been obtained from Lena
(256 x 256) using a small size string table
(4096 x 16 bit entries). (QH = Quantized
Hashing, P = number of bits kept in the
searching key)

ALGORITHM | RO ‘ Z-7 ‘ R-Z
CR
UNIX compress 1.5 2.2 0.5

QH-LZW (P=7) 5.7 5.5 7.7
QH-LZW (P=6) 193] 193] 21.1
QH-LZW (P=5) 33.3 | 33.6 | 34.2
QH-LZW (P=4) 46.9 | 474 | 48.6
QH-LZW (P=3) 58.9 | 959.7| 62.2
SNR
UNIX compress 00 00 00
QH-LZW (P=7) | 112.6 | 112.5 | 112.2
QH-LZW (P=6) 944 | 94.2| 94.2
QH-LZW (P=5) 79.2 | 789 79.0
QH-LZW (P=4) 65.6 | 65.3 | 65.1
QH-LZW (P=3) 52.6 | 53.1| 53.5

time
UNIX compress 0.48 | 048 | 0.45

QH-LZW (P=7) | 3.66 | 3.65| 3.62
QH-LZW (P=6) | 1.73| 1.70 | 1.69
QH-LZW (P=5) | 0.96 | 0.89 | 0.87
QH-LZW (P=4) | 0.55| 0.54 | 0.56
QH-LZW (P=3) | 041 | 0.38 | 0.40

