
Broadcasting of H.264/SVC video over BitTorrent-like networks

J.P. Garcı́a Ortiz J.M. Dana V. González Ruiz I. Garcı́a

jportiz@ace.ual.es dana@ace.ual.es vruiz@ual.es igarcia@ual.es

Computers Architecture and Electronics Dept.

University of Almerı́a, Spain

Abstract

BitTorrent protocol-based networks are the most

popular peer-to-peer (P2P) configurations for data

sharing in the Internet. One of the keys for its suc-

cess is the prioritization of the less popular parts of

the files so peers send first those chunks owned by

the smallest amount of clients. The same algorithm

that maximizes the bit-rate also prevents the low-

delay transmission of multimedia contents because

data streams are not sequentially sent. An alter-

native approach -still compatible with the standard

BitTorrent protocol- would be the application of the

same selection policy but applied to a sliding win-

dow which is moved from the beginning to the end

of the stream. Unfortunately, this solution imposes

to peers severe temporal restrictions for retrieving

data from the rest of peers, causing significant vari-

ations of the downstream bit-rate. The developed

proposal addresses this drawback transmitting scal-

able video streams instead of non-scalable streams.

In order to determine the efficiency of our approach,

a set of experiments have been carried out. Re-

sults reveal that a SVC-based (Scalable Video Cod-

ing) approach outperforms the standard non scal-

able (AVC) under certain circunstances. Specifi-

cally, when high encoding bit-rates are selected and

streams are truncated by a drop of the transmission

bit-rate.

1 Introduction

This work1 studies the capacity of BitTorrent net-

works to broadcast video streams. The main rea-

1This work has been funded by grants from the Spanish Min-

istry of Science and Innovation (TIN2008-01117 and TIN2009-

05737-E) and Junta de Andalucı́a (P08-TIC-3518), in part financed

by the European Regional Development Fund (ERDF).

son for selecting this kind of overlay network is

that, nowadays, BitTorrent networks are the most

used peer-to-peer applications for data sharing files

in the Internet. Usually, files are too large to be

transmitted as a whole and the BitTorrent protocol

splits them into data blocks. Blocks are transmit-

ted in an order that depends on its availability for

the set of peers (swarm) that at least shares a part

of the file. The selection algorithm selects to be

transmitted first those blocks that are less popular

in the peer neighborhood because this minimizes

the overall transmission time of the file. How-

ever, this rarest-first selection policy also prevents

the low-delay broadcasting of video because videos

must be played (and therefore, transmitted) using

a sequential ordering. A solution for this prob-

lem, fully compatible with BitTorrent, is the use of

the rarest-first selection algorithm applied only to a

small number of consecutive blocks. These blocks

are contained into a temporal sliding window that

scrolls from the beginning of the stream to its end,

every time a block is played. Unfortunately, this ap-

proach decreases the throughput of the BitTorrent-

like network because, depending on the number

of blocks in the window (number that should be

small enough to guarantee a low-delay transmis-

sion), peers have less time to retrieve sequentially

the content of each of them. This problem, added

to the fact that the peers can have Internet links

with different “speeds”, makes impossible to de-

termine the reception bit-rate during the playback

time. In this context, our proposal researches the

advantages of using the H.264/SVC standard. This

video codec can generate quality scalable streams

that can be truncated without causing playback in-

terruptions, allowing to peers to display a video

whose quality will depend on the amount of data re-

ceived. The main encoding parameters such as the

number of layers, the bit-rate of these layers and the

GOP (Group Of Pictures) size are analyzed in the

experiments. Results demonstrate that even using a

small number of layers, continuous playback can be

achieved independently of the reception bit-rate.

2 The BitTorrent protocol

BitTorrent [2] is a P2P communication protocol de-

signed for the distribution of large amounts of data

on the Internet. This data must be stored in a static-

content file that an original distributor (also called

seed) transmits to other peers of the BitTorrent net-

work. Using this model, as soon as each peer has

a part of the file, it supplies pieces of data to other

peers, reducing the band-width cost of the seed’s

link. It also decreases the propagation time of the

data thanks to the possibility of multiple concurrent

transmissions among the peers that build the over-

lay network.

Each file in BitTorrent is divided into contigu-

ous segments of equal length called chunks that are

managed independently. Chunks are usually trans-

mitted in smaller segments called pieces. Chunks

usually have a size of 128 KB or 250 KB, whilst 16
KB is the common size for pieces [8].

When a peer requires to download a file, it needs

firstly to find the associated torrent file (which usu-

ally has the .torrent extension), that contains,

among other information, the tracker IP address and

the hash code of all the chunks. These codes al-

low to validate each chunk (in order to detect trans-

mission errors) when it is retrieved by a peer. The

tracker is the only centralized component in BitTor-

rent. Its main function is to administrate the differ-

ent peers that are downloading the maintained file.

The tracker is not forced to serve this file, but only

to manage the connected peers.

Once the appropriate torrent file is retrieved, the

peer connects to the tracker to be included into the

swarm. A swarm is the set of peers that are down-

loading the same file. The tracker sends to the peer

a random set of swarm peers to communicate with

them. Within a specific swarm, there are two differ-

ent types of peers: leechers and seeders. Leechers

have only some or none of the chunks of the file and

are communicating to retrieve the rest, while seed-

ers have the complete file already downloaded but

stay connected to help the previous ones.

Each leecher requests chunks from all the peers

it is connected to, following the rarest-first selec-

tion policy. With this chunk selection mechanism

each peer selects to download first the chunks that

are less replicated among their neighbors, allowing

a dissemination of the file chunks along the whole

swarm. In order to avoid free-riding [9], BitTorrent

uses a tit-for-tat scheme, where each peer chooses

to upload to another peer as long as it takes some-

thing in return.

3 Transmission of video over BitTorrent

networks

The main obstacle for adapting BitTorrent to

streaming of multimedia content is the rarest-first

policy. Under this policy, chunks are not retrieved

by a peer in a sequential order, necessary for this

kind of content, but in a special order that ensures

a good scattering of the data along the swarm. Re-

moving completely this policy means the elimina-

tion of one of the most powerful features of BitTor-

rent, and hence to decrease significantly its perfor-

mance. A certain balance between the rarest-first

order and the sequential one must be found in order

to make feasible the multimedia streaming as well

as to maintain a good data distribution.

C. Dana et al. proposed BASS [3] that is one of

the first solutions for multimedia content, specifi-

cally for video-on-demand, using BitTorrent as P2P

base system. Authors reduce the limitation of the

rarest-first paradigm introducing a little modifica-

tion and an external server. Peers can not download

any data prior to the current playback point, and can

download data directly from the external server in

sequential order. Despite the promising results ex-

posed by the authors, this solution includes a non-

scalable external server, that reduces its applicabil-

ity.

BiToS [12] proposed by A. Vlavianos et al. in or-

der to enhance BitTorrent for supporting streaming

applications. They proposed to group chunks into

two different sets: the high priority set, with chunks

near the playback point, and the set with the remain-

ing chunks. Therefore a peer chooses with a certain

probability ρ to download a chunk of either a set or

another. Within a set, peers choose the chunk fol-

lowing the rarest-first rule. The main drawback of

42 1st Workshop on Multimedia Data Coding and Transmission

this approach is the difficulty of choosing appropri-

ate (optimal) values for ρ and for the length of the

high priority set.

Among the most relevant proposals, only LiveBT

[6], of Jianming Lv et al., changes entirely the

rarest-first policy by another different one. In this

proposal peers would download data following the

most-wanted-block-download strategy. Therefore a

peer always chooses to download the chunks that

are most wanted (are nearest the playback point)

by its neighbor peers. This new chunk selection

method is rather promising according to the showed

results, but it is not as much evaluated in real sce-

narios as the rarest-first one.

Finally, the approach made by Purvi Shah and

Jehan-Franvois Paris [11] is maybe one of the most

interesting ones. Authors introduce only little mod-

ifications to the original BitTorrent paradigm. The

rarest-first policy is maintained, but applied within a

sliding window that is moved according to the play-

back point and the received data. The neighbor se-

lection algorithm is also slightly modified in order

to improve the throughput. Neither of these modifi-

cations prevent a fully compatibility with any exist-

ing BitTorrent-like system.

Although these proposals offer a solution accept-

able for general multimedia data none of them are

oriented to scalable video.

4 The H.264/SVC video codec

H.264/SVC [10] is the scalable extension of the

H.264/AVC video coding standard [13]. SVC is an

scalable video coding framework that can produce

quality, spatial and temporal scalable streams. A

stream is composed of a collection of consecutive

sub-streams or layers, where each layer increases

the temporal resolution, the spatial resolution or the

quality of the decoded video. One of these layers

is called the base layer and the rest are named en-

hancement layers. A base layer can be decoded by

both an AVC and a SVC decoder, but enhancement

layers can be only handled by SVC ones.

SVC exploits temporal redundancy using MCTF

(Motion Compensated Temporal Filtering) [7]. Fig-

ure 1 shows an example of the use of MCTF on a

GOP of 8 images, producing 4 temporal resolution

levels. The number of spatial resolution levels is 2
and there is also 2 quality layers for each combina-

P1 P2 P3 P4 P5 P6 P8P7

L11

L15

L10

L14 L11

L15

L9

L13

L11

L15

L10

L14 L11

L15

L0

L4

L3

L7

L2

L6 L3

L7

L1

L5

L3

L7

L2

L6 L3

L7

L8

L12

Figure 1: An example of the image dependencies in

H.264/SVC with 4 temporal resolution levels (GOP size

of 8), 2 spatial resolution levels and 2 quality levels. Pi

denotes the i-th picture and Li the i-th layer. Oblique

arrowed lines represent temporal dependencies between

images, vertical arrowed lines shows spatial dependencies

and horizontal lines in the middle of a picture indicate a

dependency between two quality levels.

tion of temporal-spatial resolution. Therefore, the

number of layers is 16.

Although layers can be decoded independently,

there is a logical dependency between them that

must be respected in order to obtain a valid recon-

struction of the video. For example, L0 (the base

layer) does not depend on any other layers, but L2

depends on L1 (which also depends on L0). All

these dependencies between layers impose that in

most of cases layers should be sent in order if a trun-

cation of the stream could happen.

5 P2P low-delay transmission of scalable

video

The proposal presented in this paper is based on

the approach described in [11]. In this section only

the main modifications done to this proposal in or-

der to benefit from the video scalability are pre-

sented. As mentioned in Section 1, although the

H.264/SVC video codec offers three kinds of scal-

ability, that is, temporal, spatial (resolution) and

quality (SNR), this work focused only on the SNR

scalability, which is the most flexible way of scal-

ability. Our solution can also be applied using all

scalability alternatives, but it would require a fur-

ther study, maybe as a future work.

In our video streaming system, each GOP is com-

pressed independently and each GOP bit-stream is

stored within a chunk in order to avoid data depen-

dencies between GOPs at decoding time. Since the

Multimedia Communications 43

slide when receiving
beginning chunks

sliding window

chunks

play-back interval
slide for every

Figure 2: Example of the sliding window mechanism.

chunk size is usually equal to 128 or 256 KB, GOP

bit-streams have been generated considering these

limits.

Fig. 2 shows how the sliding window mecha-

nism of P. Shah and J-F. Paris works [11]. As afore-

mentioned, the movement of window is caused by

a complete reception of the first chunk or by a play-

back interval. The window size selection issue is

also tackled by the authors. They verified that a

near optimal value for the window size is given by

sw = d · b/sc, where sc is the chunk size (bytes), d
is the playback delay (seconds) and b is the original

video consumption rate (bytes/seconds).

Under the original approach each peer applies the

rarest-first policy to select a chunk to download only

within the window. This behavior has been modi-

fied a little bit, allowing peers to select chunks out-

side the window only if, when they are unchoked

(are allowed for requesting) there is no chunk in-

side it to download. When a peer is unchoked by

another peer, it can not waste this opportunity to re-

trieve whatever available data and contribute to the

swarm scattering.

When streaming real time video, this modifica-

tion does not affect at all, but it may become quite

relevant when streaming video files. Since the data

of the sliding window has a higher priority than the

rest, any transmission of a chunk outside the win-

dow is replaced by another one for a chunk that

were inside it as soon as possible. This is made al-

though the first chunk reception were not complete.

The BitTorrent protocol imposes that a peer in-

forms its neighbors about the existence of a new

available chunk only when this is completely re-

trieved and checked with the hash codes of the

Torrent file. In the context of scalable video stream-

ing this is an unnecessary limitation. Certain ratio

of errors is allowed in video transmissions so the

content of a chunk might be published before being

checked. Furthermore, thanks to the quality scala-

bility, the content of a chunk can be exploited al-

though it were not complete.

We add a new protocol message with the aim to

avoid these constraints. This message would be

used only between those peers that implemented

this solution, hereinafter called videoers to differen-

tiate them from leechers and seeders. Thus video-

ers must recognize each others when a connection

is established between them. We have used for this

task the reserved 8 bytes (originally included to al-

low possible protocol extensions) of the BitTorrent

handshake message. Videoers would include a spe-

cific fix value that would be ignored by leechers

and seeders, but would allow videoers to distinguish

each other.

The rarest-first policy is slightly adapted to ac-

commodate this new message and its philosophy.

The weight of each chunk is not given by its

rareness in terms of number of complete chunks,

but it is instead given in terms of total number of

pieces. Therefore, within the sliding window, a

videoer peer ρ would choose to download a new

piece of the chunk c that had the minimum W (ρ, c)
weight value, according to Equation 1. N(ρ) equals

the set of neighbor peers of the peer ρ, and P (ρ, c)
returns the number of pieces that the peer ρ has of

the chunk c.

W (ρ, c) =

i∈N(ρ)�

i

P (i, c) (1)

This weighting function is exactly the same as

the original BitTorrent one when a videoer has only

normal leechers as neighbors.

The randomized tit-for-tat policy also proposed

in [11] is used in this approach as well. Hence each

peer always selects random peers to unchoke at the

beginning of every playback. As the authors ana-

lyze in [11], this policy gives more free tries to a

larger number of peers in the swarm, achieving a

better success ratio and network throughput.

44 1st Workshop on Multimedia Data Coding and Transmission

Layer Resolution Pic. rate Av. Bit-rate Quality

1 704x576 0.9375 35.70 0

2 704x576 1.8750 60.90 0

3 704x576 3.7500 96.30 0

4 704x576 7.5000 142.10 0

5 704x576 15.0000 195.90 0

6 704x576 30.0000 264.80 0

7 704x576 0.9375 36.50 1

8 704x576 1.8750 92.10 1

9 704x576 3.7500 186.70 1

10 704x576 7.5000 316.70 1

11 704x576 15.0000 470.70 1

12 704x576 30.0000 681.70 1

Figure 3: A description of the layers generated by SVC

encodes the “crew” video sequence with one spatial reso-

lution level, two quality levels and six temporal resolution

levels. The average bit-rate is expressed in Kbps.

6 Evaluation

A video broadcasting on a peer-to-peer network that

uses the protocol proposed in Section 5 has been

simulated using the NS-2 [1].The developed NS-2

code has been based on the code written by Kolja

Eger et al. for the analysis they carried out of Bit-

Torrent [4].

A flash crowd scenario with 100 peers, with only

one initial seeder, has been simulated. Each peer

has an upload band-width of 1 Mbps and a down-

load band-width of 8 Mbps. All the peers are con-

nected to each other by means of a link with a ran-

dom delay according to a uniform distribution from

1 ms. to 50 ms. The chunk size used was set to 128
KB, but a piece size of 16 KB. The used sliding

window has a length of 10 chunks.

With the transmission bit-rates produced by the

network simulator two different experiments have

been carried out. The first experiment shows the ef-

fects of the stream truncation when a non scalable

stream (AVC) have been transmitted and the sec-

ond with a scalable stream (SVC). In both cases the

SVC Reference Software has been used [5].

The test video sequence used for the experiments

has been “crew” which is composed of 300 images

of resolution 704x576 that must be displayed with

a frequency of 30 Hz. GOPs of 32 and 16 pictures

have been tested, introducing an encoding delay of

1.06 and 0.53 seconds, and a network delay of 10.6

and 5.3 s., respectively, that can be acceptable for

most real-time broadcasting scenarios. For both,

AVC and SVC, the scheme used to remove the tem-

20

22

24

26

28

30

32

34

36

38

40

0 32 64 96 128 160 192 224 256 288

P
S
N

R
[d

B
]

Picture number

AVC
SVC

Figure 4: Quality given by AVC and SVC codec using the

sample video “crew” when 6 temporal levels were used

(GOP of 32 pictures).

poral redundancy has been MCTF. In the case of

AVC only one layer was generated with all the tem-

poral levels (5 when the GOP is 16 pictures long and

6 when it has 32 pictures). For SVC, 2 quality lev-

els were used, selecting an average bit-rate of 300

Kbps/quality-level. Therefore, the AVC version of

the video was encoded at 600 Kbps and the SVC

version was encoded at 300+300 Kbps. These bit-

rates were selected after calculating the average and

minimum bit-rates available for the peers of the net-

work. Finally, only one spatial level was selected.

This produced a total of 10 layers for the case of 16

pictures/GOP (5 temporal levels × 2 quality level)

and 12 (6 temporal levels × 2 quality levels) for the

case of 32 pictures/GOP.

Figure 3 shows an example of layer order. As

it can be seen for this video, in average, a trunca-

tion of the stream between 681.70 and 470.70 Kbps

decreases the number of decoded layer in 1. This

means that, although the reconstructed sequence

has 30 pictures/second because the layer 6 is de-

coded, odd pictures have better quality that the even

ones. This effect can be observed in Figure 4 for

the GOPs 3, 4, 5, 6, 7 and 9. It can be seen also that

the AVC is slightly better that SVC in GOPs 1, 2,

and 8, although this difference is larger for GOPs 3

and 9, where the SVC stream was truncated and the

AVC stream was not (the SVC bit-rate was slightly

superior to the AVC bit-rate in these GOPs). On the

other hand, AVC could not reconstruct GOPs 4, 5,

6 and 7. Similar results were obtained for a GOP of

16 pictures.

Multimedia Communications 45

7 Conclusions

The transmission of non-scalable (AVC) and scal-

able video (SVC) over a P2P network that uses a

BitTorrent-compatible protocol has been analyzed.

Results demonstrate that when typical variations of

the transmission rate happen, SVC can reconstruct

at the receivers a video without interruptions while

AVC can not. The loss of quality of SVC respect

to AVC is, in general, small in those parts of the

video in which the AVC stream in not truncated. As

a major remark, our experiments reveals that SVC

can improve significantly the quality of the video

broadcasting on P2P overlay networks when large

variations of the receive bit-rate have happened.

References

[1] The Network Simulator - NS-2. http://

www.isi.edu/nsnam/ns.

[2] Bram Cohen. Incentives Build Robutness in

BitTorrent. In Workshop on Economics of

Peer-to-Peer Systems, pages 229–232, June

2003.

[3] Chris Dana, Danjue Li, David Harrison, and

Chen-Nee Chuah. BASS: BitTorrent Assisted

Streaming System for Video-on-Demand. In

IEEE Workshop on Multimedia Signal Pro-

cessing, pages 1–4, October 2005.

[4] Kolja Eger, Tobias Hosfeld, Andreas Binzen-

hofer, and Gerald Kunzmann. Packet and flow

level simulations of bittorrent-like p2p net-

works. Multiagent Grid Systems, 5(2):217–

232, 2009.

[5] Image Communication Group (Fraun-

hofer HHI). SVC Reference Software

(JSVM software). http://ip.hhi.de/

imagecom_G1/savce/downloads/

SVC-Reference-Software.htm.

[6] Jianming Lv, Xueqi Cheng, Qing Jiang, Jing

Ye, Tieying Zhang, Iming Lin, and Lei

Wang. LiveBT: Providing Video-on-Demand

Streaming Service over BitTorrent Systems.

In Eighth International Conference on Paral-

lel and Distributed Computing, Applications

and Technologies, pages 501–508, December

2007.
[7] J.-R. Ohm. Three-dimensional subband cod-

ing with motion compensation. IEEE Trans-

actions on Image Processing, 3:559–571,

1994.

[8] Vivek Rai, Swaminathan Sivasubramanian,

Sandjai Bhulai, Pawel Garbacki, and Maarten

van Steen. A Multiphased Approach for Mod-

eling and Analysis of the BitTorrent Protocol.

In International Conference on Distributed

Computing Systems, pages 10–19, June 2007.

[9] L. Ramaswamy and Ling Liu. Free riding: a

new challenge to peer-to-peer file sharing sys-

tems. pages 1–10, January 2003.

[10] H. Schwarz, D. Marpe, and T. Wiegand.

Overview of the scalable video coding exten-

sion of the h.264/avc standard. IEEE Transac-

tions on Circuits and Systems for Video Tech-

nology, 17(9):1103–1120, September 2007.

[11] Purvi Shah and Jehan-François Pâris. Peer-to-

Peer Mutimedia Streaming Using BitTorrent.

In IEEE International Performance, Comput-

ing, and Communications, pages 340–347,

April 2007.

[12] Aggelos Vlavianos, Marios Iliofotou, and

Michalis Faloutsos. BiToS: Enhancing Bit-

Torrent for Supporting Streaming Applica-

tions. In IEEE International Conference on

Computer Communications, pages 1–6, April

2006.

[13] T. Wiegand, G. J. Sullivan, G. Bjontegaard,

and A. Luthra. Overview of the h.264/avc

video coding standard. IEEE Transactions on

Circuits and Systems for Video Technology,

13(7):560–576, 2003.

46 1st Workshop on Multimedia Data Coding and Transmission

