
An Efficient Technique for Remote Browsing of
JPEG 2000 Images on the Web

J.P. Ortiz, V.G. Ruiz and I. Garćıa

Abstract— This paper presents an evaluation of the
existing techniques for remote browsing of JPEG 2000
images and a new proposal that solves many of the ob-
served deficiencies of these techniques for Web based
systems. Up to now the use of the JPEG 2000 stan-
dard is not being very popular because of the existing
solutions are complex and sometimes inappropriate.
The main goal of this work is to offer an optimal and
easy solution for this kind of systems.

Keywords— JPEG 2000, JPIP, HTTP, data-bin.

I. Introduction

The JPEG 2000 compression standard, thanks to
its powerful features, allows to implement efficient
systems for remote browsing of images. But nowa-
days, this kind of systems is not very popular, spe-
cially on the Web, because of the main disadvantages
of the existing solutions. It is necessary a new ap-
proach that increases the JPEG 2000 standard pop-
ularity on the Web, making possible to exploit its
desirable features in order to be able to browse effi-
ciently remote images.

The rest of this paper is structured as follows: in
the Section II, we present the fundamentals of the
JPEG 2000 compression standard; in the Section III,
the existing techniques for remote browsing of JPEG
2000 images are presented, explained and analyzed,
showing their main advantages and disadvantages;
in the Section IV, it is exposed our proposal, detail-
ing its operation; in the Section V, we analyze and
evaluate our proposed system, comparing ir with the
existing solutions; finally, in the Section VI, we con-
clude with the pertinent conclusions.

II. JPEG 2000

JPEG 2000 is a recent image compression stan-
dard [1], emerged from the Joint Photographic Ex-
pert Group (JPEG) within the International Stan-
dards Organization (ISO). It is based on the Dis-
crete Wavelet Transform (DWT) and the Embedded
Block Coding with Optimized Truncation (EBCOT)
[2]. One of its main features, apart from the effi-
cient compression, is its high scalability, allowing,
for example, quality, resolution and spatial scalabil-
ity. This feature makes it ideal for remote browsing
of images, where the client needs to view an specific
region of a remote image, at a necessary resolution
level (WOI).

In this section we explain basic concepts related
to the JPEG 2000 standard in order to be able to
present properly the different techniques for remote
browsing of JPEG 2000 images.

This work was supported by the MCyT under contracts
TIC2002-00228.

Since the DWT is used, the original image is de-
composed in 1 + 3nr spatial frequency subbands,
where nr is the number of resolution levels. The
EBCOT paradigm requires to divide each subband in
rectangular blocks with the same size, called “code-
blocks”. The code-blocks are grouped into rectangu-
lar groups called “precincts”, whose dimension can
be change in each resolution level.

Each code-block is independently coded into an
embedded bit-stream. The code-block bit-streams
are divided in nl segments of different length, where
nl is the number of quality layers.

The compressing process is applied independently
to each component of each tile. Tiling will not be
explained in this paper, and we will assume the im-
ages do not have tiles, that is, they will have only one
tile, occupying the entire image. The tiling is only
used in specific applications because, in general, it
decreases the quality of the reconstruction.

The bit-streams of each code-block of a precinct,
associated with the same quality layer, are grouped
in a “packet”. In this way, every packet is associated
with a tile, a component, a resolution level, a precinct
and a quality layer. The generated packets when
compressing an image can be interleaved in one of the
progression orders defined in the standard: LRCP,
RLCP, RPCL, PCRL and CPRL. In relation to the
progression names, “L” is for quality layer, “R” is
for resolution level, “C” is for component and “P” is
for precinct.

The Part 1 of the JPEG 2000 standard defines
the core coding system, establishing the basic for-
mat of a compressed image, the code-stream. The
code-stream contains all the packets generated by
the compressing process and a set of markers that
can mark specific sections. If a marker contains ad-
ditional information, is called marker segment. Both
markers and marker segments are named with a 3
letter name.

In the Figure 1 it is shown the basic structure of
a code-stream. There is a main header (composed
of markers and marker segments) and the packets
of all the image tiles. The set of packets of every
tile is partitioned in subsets called tile-parts. Each
tile-part has a header too.

A file with a simple code-stream stored normally
has the “.j2c” extension, and it is commonly called
“raw file”. In order to provide more functionality
and flexibility, in the Part 2 of the standard [3] it
is defined a more complex image file format, that
is based on “boxes” (JP2 boxes) of information. In
this format, a code-stream would be included within
a box. Other defined box is, for example, a box

tile

main
header tile−part

tile−part

tile−parttile

header
tile−part

packet

packet

packet

Fig. 1. Code-stream structure.

for the palette information (there is no defined any
marker segment for storing this information). The
primary image file format based on boxes is the JP2
file, but there are another image file formats defined
in the standard following the same structure. The
image files with a format based on boxes are typi-
cally called “JP2-family files”. The JP2 boxes can
be super-boxes, containing another boxes.

III. Remote browsing techniques

In this section we are going to review the main ex-
isting techniques for remote browsing of JPEG 2000
images to be able to evaluate and compare at the end
the proposed and implemented system with these. Is
is important to bear in mind that the required aim is
to browse images remotely on Internet, mainly on the
Web. Some techniques here presented were designed
for a generic use, so they have several disadvantages
in this context, although in many others they are
very efficient.

A. JPIP

JPIP is a protocol defined in the Part 9 of the
JPEG 2000 standard [4][5], and is a evolution of the
JPIK protocol proposed by D. Taubman. At the
beginning, although the JPEG 2000 still image com-
pression had many features oriented to implement
efficient applications for remote browsing, the stan-
dard did not define any mechanism to do it. Later,
in the Part 9, it was defined the JPIP protocol with
the purpose of covering this kind of applications.

In the Figure 2 we can see the typical structure of
a system for remote browsing of images, using the
JPIP protocol. The system is a typical client/server
system, where the clients request WOIs of remote
images to the server, and this sends the necessary
information for reconstructing them. In the client
side, there are four modules: i) the user interface, or
browser, which transforms the user interactions into
WOI requests, ii) the JPIP client, which receives the
WOI requests form the browser and sends them to
the server, through a communication channel, iii) the
client cache, where the JPIP client stores the infor-
mation received from the server, and iv) the module
which is decompressing and rendering iteratively the
cache data for reconstructing the requested WOIs,

and sending the imagery to the browser for showing
it to the user. In the server side, there are JPEG
2000 images and a JPIP server that processes the
WOI requests, extracts the appropriated information
from the local images, transcoding them if necessary,
and sends it to the client. It is possible, although it is
not required, that the server maintains a cache model
of the client to avoid send information already sent.
This cache model can be explicitly modified by the
client.

The JPIP protocol has been designed for being
implemented over almost any other protocol, like
HTTP, TCP or UDP, although the most commonly
used protocol is HTTP, due to that the JPIP re-
quests and responses can be easily encapsulated in
HTTP messages. It makes that the communication
between JPIP clients and servers can be established
on the Web infrastructure, passing through the pos-
sible existing Web proxies.

Currently, the JPIP system is in general the most
efficient option for implementing applications for re-
mote browsing of images, exploiting the features of-
fered by the JPEG 2000 standard. But, if we need to
exploit these features in a common Web infrastruc-
ture, that is, placing the images in a Web server, this
system has several disadvantages. The first disad-
vantage is the requirement of a specific server when,
currently, there are not implementations for all the
computer architectures. This does not occur if you
use a standard server, like a HTTP server, because
you do not have any problem to find an implementa-
tion and, in many cases, the implementation is free
(like the Apache server) A specific server is not al-
ways possible in Web systems, because in many cases
we have to use an external server machine and, either
the owner refuses a strange and not well-known ex-
ternal server or the security rules used do not allow
to use other port different from the standard ports
(HTTP, SMTP, etc.).

Another disadvantage of the JPIP protocol is the
processing overload of the server machine. In gen-
eral we will be able to use only one computer, so
we would have to integrate the Web server and the
JPIP server in the same machine. The JPIP philoso-
phy admits that the images stored in the server were
of any type (with or without tiles, with any precinct
dimension, with any kind of progression, etc.), so
the server must transcode “on-the-fly” the images to
transform them in a more efficient format for trans-
mission. This overload is not very important for a
machine without any other important process, but
in a computer intended for Web serving, where there
is a Web server with other high processing overload,
this is unacceptable.

B. Indexed JP2-family files

As has been explained, the data of a compressed
image is partitioned in bit-streams called packets,
with diverse lengths. If we want to reconstruct only
a certain region of an image, we need to access to
those necessary packets for this region. To do it, we

Decompress/

Rendermodel

Cache Client

cache

WOI

WOI

status

JPEG2000

image file

WOI

JPIP
response

JPIP ClientJPIP Server Browser

data−bins

imagery

ClientServer

Fig. 2. JPIP structure.

have to know the length of these packets and their
offset within the compressed image file. It is solved if
we use the JPIP architecture, because the server has
the images locally stored and can read them to ex-
tract the required packets, according to the requested
WOI, and send them to the client. But, if we want
to use other different protocol, we will have to index
the image file. In this fashion, we could read firstly
the index, process it to determine what packets are
necessary, and read them independently.

Neither the Part 1 nor Part 2 of the JPEG 2000
standard define the formal way to index a com-
pressed image. Viewing this lack, in the Part 9 of the
standard, a part from the JPIP protocol, a collection
of boxes for JP2-family files was defined to allow us
to include indexes in image files. With these indexes
it is possible to obtain the length and offset, within
the image file, of the different parts of it, including
the packets. One of the main purposes of these boxes
was to ease the implementations of JPIP servers.

Furthermore, these kind of boxes can be used to
implement applications for remote browsing, using
other different protocol, like HTTP, that offers the
possibility of access randomly to the image. Using
the index boxes, the client would read firstly the in-
dex boxes stored in the JP2-family file, would ana-
lyze it, and finally would read the precise parts.

To use this solution with other protocols different
from JPIP has two important deficiencies: i) there
is a big overload of information required to be trans-
mitted, and ii) are necessary a considerable number
of round-trips for retrieve the index and image data.

On average, removing the initial read data re-
quired to find the main box and parsing the two
initial sub-boxes, to read the index of the packets
of a tile, in the simplest case, is necessary to read
at less (17 + 8npc)nc bytes, where nc is the number
of components and npc is the number of packets of
every component. It is quite suboptimal.

Finally, the creation of the index boxes requires an
external application that parses an already created
image file, because the most of the current compres-
sors, so free as commercial, do not support this in-
dexing process.

C. Deshpande and Zeng proposal

The proposal of Deshpande and Zeng [6] is per-
haps the solution more specifically oriented to Web

systems. It is completely based in the HTTP/1.1
protocol [7]. Their solution consists in creating an
external index file, associated to every JPEG 2000
image file. The external index file would be refer-
enced, for example, in a Web page, and a client, when
downloads it, can build in memory the appropriate
image index for remote browsing those parts of inter-
est. By byte-ranging, feature offered by HTTP/1.1,
the client can request to a generic Web server the
necessary parts.

This solution has the following desirable features:
i) it is very flexible, being able to index almost all
kind of images, from simple raw files to complex JP2
family files, ii) it needs a simple implementation for
clients, and iii) has a fully integration with a Web
system, being able to use easily a generic Web server
and to be included in a common Web page.

The client needs with this solution to do only one
round-trip for retrieving the index, instead of in the
solution with indexed JP2-family files, where the
client has to do many round-trips to only find the
index. However, the client has to read the entire in-
dex before to request any part of the image. The
initial wait before to show any reconstruction to the
user is proportional to the connection speed and the
size of the index file. Deshpande and Zeng propose
several formats for the index file, from the simplest
and smallest to the most complex and biggest. As
much complex the index file is, much big is, but more
efficiency and fast is the process of the client to calcu-
late the interesting parts of the image. The simplest
index file would contain just the main header, tile-
part headers, packet headers (if any), and the length
of all the tile-parts and packets.

The authors estimate that the average size of the
index file would be around the 1% of the original
code-stream. So, for example, for a raw JPEG 2000
image file, of 5MB, a client that wanted to remote
browsing it through a connection with a speed of
4KB/s, it would need the client to wait around 13
seconds downloading the index file, before to be able
to request any image region. It is unacceptable.

The use of external index files has in addition the
same problem of indexed JP2-family files, that is,
the storing overload in the server, although for the
simplest index format, this overload is smaller.

For index JP2-family files, once it is found the ap-
propriated index, we do not need to read it entirely

TABLE I

Advantages/disadvantages of existing techniques.

Technique Advantages Disadvantages

JPIP

- Minimal additional
information.

- Transmission efficiency.
- It is not needed an index.
- Accepts any kind of JPEG2000

image file.
- Server has local access to

image files and can transcode
them if it is necessary.

- Need for a specific server.
- Few server implementations

currently available.
- Processing overload in the

server.
- Web proxy caching not

exploited.
- Not fully compatible with Web

systems.

Indexed
JP2-family
files

- Possibility of using generic
servers.

- Index included within the
image file.

- High transmission overload
due to the index structure.

- Too many round-trips.
- No raw files support.

Deshpande
and Zeng
proposal

- Specifically designed for
HTTP/1.1 protocol.

- Possibility of indexing any
kind of image file.

- Requires a simple
implementation.

- Requires an external index
file.

- It is necessary to retrieve
the index file before to do
any byte-range request.

before to request any image part, we can do it in par-
allel with the part requests (in the case of HTTP, a
part would be called byte-range), reducing the initial
delay. In this way, as soon as we obtain, for example,
the offset and length of a packet, we can request it
to the server. It is possible with the HTTP/1.1 pro-
tocol and its pipelining. The Deshpande and Zeng
proposal does not allow this.

For concluding the evaluation of the existing tech-
niques for remote browsing of JPEG2000 images, we
present their main advantages and disadvantages in
Table I.

IV. The proposed technique

The JPEG 2000 standard allows complex image
files, with the possibility of including a wide variety
of information, apart from the image data. But re-
ally, practically all of this other information is not
necessary for applications for remote browsing at
all. On the other hand, this additional information
makes more complex and difficult to retrieve the im-
age data. In almost all cases, a simple raw file (a
J2C file with just a code-stream) can contain any
kind of image destined for remote browsing applica-
tions. Limiting and fixing the image file structure
we can simplify the image data retrieving process,
making it more efficiency and faster.

The code-stream still permits a big number of im-
age file configurations, so we would have to fix it a
bit more. This limitation does not obstruct at all to
use any image, but we will have to store the images
in files with a specific structure.

In this paper we propose to use a limited J2C file
format (hereinafter this kind of files will be called
J2L files) and a client structure for retrieving the im-
age data using the HTTP/1.1 as a technique to im-

plement systems for remote browsing of JPEG 2000
images through Internet. A J2L is a standard J2C
file that contains a JPEG 2000 code-stream with a
fixed and known structure, that implies the following
restrictions: i) the main header must contains TLM
markers with the size of all the existing tile-parts, ii)
all the tile-part headers must contain PLT markers
with the size of all the associated packets, iii) the
progression must be always the LRCP progression,
that is, by quality, and iv) the tile-part partitioning
must be by resolution.

A part from these restrictions, it is recommended
(but it is not necessary) the following guides for a
better transmission efficiency: i) the main header
should be as little as possible, containing only the
essential marker segments (SOC, SIZ, TLMs, QCD
and COD), ii) the tile-part header should be as lit-
tle as possible too (SOT, PLTs and SOD), iii) there
should be precincts with a little size, and iv) there
should be only one tile.

SOC, SIZ, COD, QCD, SOT, SOD and EOC are
necessary marker segments for any code-stream. The
TLM marker segment stores the size of every tile-
part belonging to the code-stream. As all tile-parts
are stored in a sequential way, reading the TLM data
we will be able to access randomly to any tile-part.
The PLT marker segment contains the length of all
the packets of a tile-part, as they are stored. Every
one of these lengths is coded to occupy the mini-
mum bytes. In general, a length that is represented
with LB bits, is coded in a PLT with dLB/7e bytes.
As the packets are stored sequentially in every tile-
part, and every tile-part contains all packets of a
resolution level of a quality layer, we can construct
an index reading the PLTs data. The PLT marker
segment produces less overload than for indexed JP2

cacheJPL
images

packets

packets

HTTP
server

packets

decompressor

browser

packets

requester

reader

requests

image
sequence

Server Client ROI/
resolution

Fig. 3. Proposed system structure.

files, because in this last case, the stored information
for every packet is bigger and fixed.

In the Figure 3 it can be observed the proposed
system structure. In the server side it is necessary
only a HTTP/1.1 server and a set of JPL image files.
The client side is practically the same as in the JPIP
solution, except for the module responsible for the
communication with the server. In our proposal, this
module is divided in two sub-modules which run con-
currently: the requester sub-module and the reader
sub-module. The requester sub-module receives the
WOI request from the browser module and translates
it into HTTP byte-range requests for the server. The
reader sub-module is always listening to the socket
for possible server responses.

For a WOI request, the requester sub-module cal-
culates the necessary packets to reconstruct it, with
simple geometrical operations. In JPL image files,
the packets are grouped in one tile-part per resolu-
tion level and quality layer (R-L), so that the image
index will be built as are required packets of a new
R-L. When it is required a packet of a new R-L, the
client has to read the header of the associated tile-
part (using the TLM marker segments), where there
are PLT marker segments. Processing the PLT infor-
mation it is possible to build an index of the packets
belonging to new R-L. In the PLT read processing,
as soon as it is known the offset and length of a re-
quired packet, the appropriate request is made to the
server.

V. Evaluation

For the evaluation we have used several true-color
images (three components), with several sizes, from
1024x1024 to 5462x7087. The precinct sizes have
been from 64x64 to 256x256. We have used a large
number of quality layers and several resolutions lev-
els. In order to evaluate the JPIP solution, it have
been used the JPIP server and the JPIP browser of
the Kakadu package, version 4.0, for Windows. The
images have been coded in a JPL format. To evalu-
ate the solution of indexed JP2-family files, we have
been the Apache HTTP/1.1 server 1.3.4 for Windows
and a self-implemented client for requesting the im-
age data by byte-ranging. The images have been
stored in indexed JP2 files. For the evaluation of the
Deshpande and Zeng proposal, we have used simple
index files and JPL images. The server used has been

the same as for the previous evaluation. The client
used has been a self-implemented one. Finally, in or-
der to evaluate our proposal we have used the same
HTTP/1.1 server, and JPL images.

In the Figure 4 it can be seen the graphic of the
evaluation result, as average of all the tests done.
The graphic shows the relation between the PSNR
in dB of the reconstructed image and the received
data in Kbytes. In all the tests it has been selected a
different specific WOI, that is, a region within a res-
olution level. If we just limit the evaluation to the
relation between PSNR and received data, it is true
that the JPIP solution it the optimal. But, the pro-
posal solution is very closed, above the others solu-
tions. The difference it is caused in the first instance
by the HTTP headers overload. Nevertheless, our
proposal solves nearly all the mentioned disadvan-
tages of the JPIP solution for Web applications.

 0

 10

 20

 30

 40

 50

 60

 0 200 400 600 800 1000

P
S

N
R

 [d
B

]

Received data [Kbytes]

JPIP
JPL

JP2-HTTP
Deshpande

Fig. 4. Performance comparison of the different solutions.

VI. Conclusions

After evaluating the existing techniques for remote
browsing of JPEG 2000 images on Web systems, it
has been proposed a solution which tries to offer a
simple and efficient implementation, and to avoid
many of the presented disadvantages of the existing
ones. Our proposal has the purpose of promoting
and easing the implementation of powerful Web ap-
plications for remote browsing of images, exploiting
the JPEG 2000 standard features, making use of the
Internet infrastructure.

References

[1] ISO/IEC 15444, Information Technology – JPEG2000
Image Coding System – Part 1: Core coding system, 2000.

[2] D.S. Taubman, “High Performance Scalable Image Com-
pression with EBCOT,” IEEE Transactions on image pro-
cessing, pp. 1158–1170, July 2000.

[3] ISO/IEC 15444, Information Technology – JPEG2000
Image Coding System – Part 2: Extensions, 2000.

[4] ISO/IEC 15444, Information Technology – JPEG2000
Image Coding System – Part 9: Interactive tools, APIs
and protocols, 2003.

[5] D.S. Taubman and M.W. Marcellin, “JPEG2000: Stan-
dard for Interactive Imaging,” Proceedings of the IEEE,
vol. 90, no. 8, pp. 1336–1356, August 2002.

[6] S. Deshpande and W. Zeng, “HTTP Streaming of
JPEG2000 Images,” in Proceedings of the IEEE Inter-
national Conference on Information Technology: Coding
and Computing, April 2001, pp. 15–19.

[7] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter,
P. Leach, and T. Berners-Lee, Hypertext Transfer Protocol
– HTTP/1.1, http://www.ietf.org/rfc/rfc2616.txt, June
1999.

[8] “Netcraft Web server survey,” http://news.netcraft.com/
archives/web server survey.html.

