Improving the Remote Browsing of JPEG 2000 Images on the Web

J.P. ORTIZ, V.G. RUIZ, |I. GARCIA
Computer Architecture and Electronics Department
University of Almeria
04120 Almeria, Spain
email: jportiz@dali.ace.ual.es, vruiz@ual.es, inma@ace.ual.es

ABSTRACT

This paper presents a set of minimal modifications of
the JPIP standard architecture to improve the Web proxy
caching in those applications designed for progressive and
interactive browsing JPEG 2000 remote images, using the
JPIP architecture with HTTP as the transporting protocol,
and employing Internet connections through proxies. Ex-
perimental results show important improvements in the
quality of the reconstructed image.

KEY WORDS
JPEG 2000, JPIP, HTTP, proxy, cache, data-bin.

1 Introduction

JPEG 2000 is a recent image compression standard de-
veloped by the Joint Photographic Expert Group (JPEG)
[4, 2]. It is based on the Discrete Wavelet Transform
(DWT) and the Embedded Block Coding with Optimized
Truncation (EBCOT). One of its main features is its high
scalability; this scalability can be obtained in three differ-
ent domains: quality, resolution and spatial.

The basic format of a JPEG 2000image consists of a
set of markers which contain references to useful infor-
mation (compression parameters, image features, begin-
ning or end of a packet, etc.), and also to a set of variable
length packets, each of them containing the compression
result of a specific area of the original image.

The order in which packetsare stored determines the
kind of progression when the image is decompressed se-
quentially. This order is described by a sequence of four
characters which indicates the kind of scalability used (L=

quality layer, R = resolution, P = precinct, C = compo-
nent). For example, the RLCP order indicates that pack-
ets are stored by resolution (R), by quality layer (L), by
component (C) and by precinct (P).

This progression establishes the default progression ex-
isting in the code-stream, but it is possible to access to the
desired packets independently, and to retrieve them in any
order.

In order to offer a higher flexibility and functionality to
image files, JPEG 2000 defines a highly configurable and
extending file format. This file format permits to encap-
sulate one or more code-streams and to include diverse
additional information.

The high scalability offered by the JPEG 2000 standard
makes it ideal for progressive and interactive remote im-
ages browsing applications. Because of the user’s inter-
action, in these applications, a client carries out requests
to a server asking for a specific region within a specific
resolution level. The client also has the ability to indicate
others parameters like the number of quality layers or the
number of desired components.

Part 9 of the JPEG 2000 standard proposes a
server/client architecture and a communication protocol
called JPIP [3, 5] for the implementation of this kind of
progressive and interactive applications. In this archi-
tecture, depicted in Figure 1, the client indicates to the
server a region and the highest resolution level within
a remote image (WOI: Window Of Interest). The JPIP
server would send to the client the necessary information
to reconstruct the requested WOI. This information is col-
lected by the server from the local JPEG 2000 image.

JPIP protocol can be implemented over different proto-

cols, being HTTP/1.1 protocol [1] one of the most inter-
esting, since it easily allows to encapsulate requests and
responses in HTTP messages, The use of HTTP/1.1 pro-
tocol permits to exploit the Web infrastructure.

The Web infrastructure offers many advantages with
relation to another more specific, as for example, the
caching system, which can be used not only at a client
level, but also at the level of the existing proxies in the
connections between clients and servers.

The JPIP protocol, running on HTTP, does not exploit
all the performance of the Web caching system. The sys-
tem proposed in this paper tries to exploit as much as
possible the proxies caches in applications for progressive
and interactive remote JPEG 2000 images browsing.

The rest of this paper is structured as follows: in Sec-
tion 2, the current working JPIP architecture is detailed,
showing its deficiency for the task of exploiting the Web
caching system, and proposing a solution for it; in Section
3, a possible implementation of the suggested system is
explained; in Section 4, the achieved results with the pro-
posed system are exposed, and finally, in Section 5, we
finish with the pertinent conclusions about our proposal.

2 Theproposed system

The JPIP protocol divides any JPEG 2000 image I (either
in raw format or in a more complex format) into a set of
N parts called data-bins, I = {d;,ds,...,dn}, SO that,
when a client at an instant ¢ requests a specific window
of interest of the image I, WOIt(I), the information that
the server sends in response, r(WOIt(I)), is the subset of
image data-bins that permits to reconstruct that request,
F(WOIt(I)). Therefore,

r(WoIy = FwoIry ={d,,....diy cI (1)

As it can be observed in Figure 1, the server can op-
tionally maintain a client cache model in order to avoid
sending information (data-bins) that it has already sent. It
is only incumbent upon the requests of a same client.

In Table 1, the different types of existing data-bins are
enumerated. It has to be pointed out that the most im-
portant data-bins are those concerning to the code-stream
packets.

Client

wol — wol
JPIP Server | | JPIPClient | | Browser
— | | L
JPIP status
response Wol imagery

]]
JPEG2000 | i Cache ! Client
image file cache

Server

data—bins Decompress/

Render

i
i model !
o

Figure 1: Client-Server JPIP architecture.

Table 1: Data-bin types

Type Information

Precinct data-bin Precinct data

All tile-part headers concate-

Tile-header data-bin |1 <" e

All tile-parts concatenated of a

Tile data-bin .
tile

Main-header data-bin | Main header

Collection of boxes of a JPEG

Metadata-bin 2000 family file

The Web infrastructure caching system that we are go-
ing to use is maintained by the existing proxies in the
connection between client and server. A proxy is a spe-
cial server that acts as intermediary between one or more
clients and one or more servers (both clients and servers
can also be themselves proxies), in order to offer, among
others, one or more of the following functions:

e Protocol conversion: In case clients and servers use
different protocols.

e Security control: Allowing to establish a set of secu-
rity rules in connections, in one or other direction.

e Caching system: Allowing to reduce the latency in
case two or more clients ask for the same request in
a sufficiently short interval of time.

With regard to the JPIP protocol, it is true that a proxy
stores in its cache the results of previous requests, how-
ever a client can only take advantage of the information
saved at the cache when its request is identical to a previ-
ous one.

This is rather inefficient, since many of the different
requests for a same image will share information. Cur-
rently, for two different requests from the same image,

from two different clients, that require a common set of
data-bins, the server response for the last request is com-
plete, as it appears in Equation (2), although had existed
a proxy/cache hierarchy in the communication between
client and server. More concisely,

P(M;Olt(-{-)m) #0 =>I
T(WOIzS(+)At) = F(WOIIS(+)At>

where P(WOID,,) = FWOI")yn F(woIl,,) is
the set of data-bins saved in the proxies.

The most efficient communications is when the server
only sends the set of data-bins that are not saved into the
proxies. This is given by:

@)

r(WOID,,) = FWOIL,,) — PWOIL,,) (3)

It is true that, due to the features of the standard JPEG
2000, it is possible to implement an application for re-
mote image browsing, without necessarily using the JPIP
protocol. For example, it would be possible only to use
the HTTP/1.1 protocol and, using byte-ranging, a client
would access to those necessary data-bins for a certain
WOI. The problem is that most of the proxies do not man-
age byte-ranges efficiently, because byte-ranges are ei-
ther ignored or they produce the proxies to retrieve from
the server the whole associated file and, after received,
they sent the client the requested byte-ranges. If byte-
ranges are ignored then they pass through proxies without
caching. So, it can not be assured that the possible exist-
ing proxies between a client and the final server make an
efficient caching of the byte-ranges.

The first solution consists of dividing a single WOI re-
quest into a request of data-bin references, and a set of
requests, one for each data-bin reference. Thus, the client
would send to the server the WOI that it needs to browse,
and the server would return the necessary data-bin refer-
ences. The client would ask the server for one by one
every data-bin, in different requests. This would make
that, when encapsulating every request in HT TP message,
proxies could cache them in an independent way, making
Equation (3) possible. It would only have to add to the
JPIP server the possibility of answering the requests of (i)
the references of the necessary data-bins for a WOI and
(ii) a specific data-bin. Besides, the JPIP server had to im-
plement the HTTP protocol caching system, handling the

different associated headers (Cache-Control, I1f-Modified-
Since, etc.).

A priori, this first solution would efficiently use the
caching system of the Web infrastructure, besides it would
not need the caching system of the protocol JPIP. How-
ever, this solution has a overload problem because of the
large amount of the own ASCII headers of the HTTP.
Depending on the type of the messages, an HTTP mes-
sage can have 200 additional bytes on average, due to the
ASCII headers. To reconstruct an area of a J’PEG 2000
image of 2954 x 1976, with 7 resolution levels and 10
quality layers, with a precinct size of 128 x 128, we need
a total of 1260 packets, for what we would have 252000
overload bytes on average when effecting the correspond-
ing data-bins requests.

Besides, this overload per request is not homogeneous,
so that for very large data-bins, the overload is small, but
for very small data-bins (for example, the data-bin associ-
ated to an empty packet, of a 1 byte), the overload can be
larger than 20000%.

To find a solution to this problem, we propose to create
a set of blocks, each containing a subset of data-bins. For
an image I, we define a minimum block size s(*), and we
join the data-bins of the image into blocks, so that each
block contains the minimum number of data-bins such
that the total size of each block is equal or greater than
s). Notice that we only can assure this for all blocks
except the last one.

For a minimum block size equals to 0, we would find
that a block would be identical to a data-bin. The mini-
mum block size would be chosen depending on the aver-
age size of the image data-bins.

When making a request per block, instead of per data-
bin, we control the overload produced by the HTTP head-
ers. For any response to a request of any block, we would
have a maximum overload of (100 - h/s"))%, where h
is the maximum size of the block headers. This overload
assumes that, when requesting a specific block, all blocks
included are necessary, although many times this is not
true. In any case, it would comply with (3) at the block
level, with a time delay reduction in responses.

The most important data-bin is the one associated to
the packets, so if we would want the blocks to include
the maximum number of interesting data-bins, it would be
recommendable that the last progression dimension was
by precinct, P (for example, RLCP), that is, the packets

would be organized by lines, within the code-stream.

3 Implementation

The implementation of this proposed solution is not in-
tended to replace the JPIP’s current, but for being a com-
plement to use in those applications in which it is required
to use efficiently the caching system of the Web infras-
tructure. Next we propose the basic modifications to do to
a classic JPIP server in order to implement the proposed
solution.

Firstly, we have to modify the server for accepting a
new type of request, with which a client can ask for the
references of the necessary blocks to reconstruct a specific
WOlI. For this, we will include the parameter request,
with the value blocks, in a request. So, for example, a
request of a client asking for the references of the neces-
sary blocks to reconstruct a WOI with a size of 310 x 310,
with an origin (10, 10), and at a resolution level within an
area of 512 x 512, for the image rimage.jp2, would be as
follows:

GET http://jp2.server/rimage.jp2?roff=
10,10&rsiz=310,310&fsiz=512,512
&request=blocks HTTP/1l.1l«

Host: jp2.client«

>

When the server finds the request parameter with the
blocks value, it provides the references of the necessary
blocks to reconstruct the required WOI. The client can
also indicate the wanted minimum block size, in bytes,
with the sblock parameter. This size could be either
accepted or not by the JPIP server, being the server able
to modify it, if necessary, notifying the client this modifi-
cation by means of JPIP-sblock header. If the client
does not specify any block size, the server will use a de-
fault size and will notify the client.

Next we can see an example, with the same last request,
but specifying 512 bytes as the minimum block size re-
quired:

GET http://jp2.server/rimage.jp2?roff=
10,10&rsiz=310,310&fsiz=512,512
&request=blocks&sblock=512 HTTP/1.1l<

Figure 2: VBAS structure.

Host:
<«

jp2.client«

The server could provide a response as follows, where
the server has changed the minimum block size to 256
bytes:

HTTP/1.1 200 OK, with modifications«+
JPIP-sblock: 256«
«>

If the server did not find the request parameter, its
behavior would be the standard one. If it was found, it
must not include headers for disabling proxies caching,
like Cache-Control: no-cache, but it must be
able to interact with the Web caching system, supporting
headers like If-modified-since, and ignoring the
headers of the caching system of the JPIP protocol.

The content of a server response is a set of references
of the necessary blocks to reconstruct the requested WOI.
Every block reference is an index, starting at 0, with a
VBAS structure (variable-length byte-aligned segment),
defined in JPIP. This structure, which can be observed in
Figure 2, allows to store a number B, whose binary rep-
resentation would have a length of Lz bits, in a total of
[Lp/T] bytes.

This first server response will not be cached, due to
the fact that two identical requests can produce different
server responses (a server could modify any request pa-
rameter). Because of this, it would be more interesting
that the server response was as small as possible, perform-
ing the compression. It is carried out by the HTTP proto-
col using the Content -enconding header. With this
header, the server could compress the response content,
indicating which algorithm, within the set of supported
algorithms of the protocol, has been used (for example, it
could indicate deflate, gzip, etc.).

In Figure 3 we can see the JPIP client structure, with
the proposed madification. This structure needs two sock-
ets, Socket 1 and Socket 2. It would send references re-

I
I
1| JPIP Client

WOI blocks i

Socket 1
references request 4

WOl
Browser

T 4 3
JPIP Server | 1 i

‘ L
I

I !
I

|
' Block
i reference

Block request 2 ‘

WOI blocks
references

JPIP Server/
Proxy

Block (data—bins)
Socket 2

data-bins

| Cache

Figure 3: JPIP client proposed.

quests through Socket 1 and, when it is received any refer-
ence, it would send the associated block request through
the Socket 2. In the proposed client structure, the own
pipelining of the HTTP/1.1 is fully exploited, allowing to
make requests and to receive responses both in parallel.

As soon as the client receives a block reference through
the Socket 1, it sends a request about the referenced block
through the Socket 2. In order to request a specific block,
it is necessary to use the block parameter, taking the
value of the wanted block index. In the following example
we can observe a client request about the block number
20, of a remote JPEG 2000 image called rimage.jp2:

GET http://jp2.server/rimage.jp2
?block=20&sblock=256 HTTP/1l.1«<
Host: jp2.client«

P

For all the requests of the client, it is necessary to indi-
cate the minimum block size used, which will be used by
the server to join the image data-bins in blocks, and index-
ing them. This size must be the same than the indicated
by the server as result of the first client request about the
references of the blocks.

Every read block contains a set of contiguous data-bins.
In order to offer the maximal compatibility, the format of
these data-bins is the same that the format employed in

the JPIP protocol. The order in which the server merges
data-bins in blocksis completely free, although it would
be more efficient to use an order that would allow to im-
prove the progressive visualization in the client. In the
same way, the order of the references sent by the server,
due to a WOI request, is free too. However, for a simple
format of a JPEG 2000 code-stream, the best ordering is
that where the block containing the main header data-bin
was firstly sent (and it would be recommendable that its
position within the block was the first one); it would be
also recommended to use an ordering in which the packet
data-bins follow a quality progression, like, for example,
LRCP.

The server must comply with that, having the same
minimum block size and the same block number, two dif-
ferent requests would produce the same set of data-bins.
This must be complied strictly to avoid incoherence in the
cache of the proxies.

4 Reaults

For the realization of the tests, it has been employed the
architecture shown in Figure 4. In this architecture it can
be seen that the connection between the clients and the
server is carried out through one (or more) Web proxies,
with a caching system. Several WOIs, all referring to the
same image, are visualized in different moments of time,
in different clients. The JPEG 2000 remote image used
here is 2954 x 1976, with 7 resolution levels and 10 qual-
ity layers. In order to simplify the experimental test, the
image format will be the raw format (.j2c) and it will not
contain neither tile nor tile-parts.

The LRCP image progression has been used. The data-
bins order was as follows: the first data-bin is the main
header data-bin, and the next data-bins are the packets
data-bins in the same order as the image progression.

As minimum block size 512 bytes was chosen, and hav-
ing an average header size of 100 bytes per HTTP mes-
sage, a maximum overload of 20% was obtained.

For recording the experimental results, a specific WOI
was first visualized in one of the clients at the maximal
resolution level. This WOI had a size of 512, its ori-
gin at (100, 100). After this visualization, another differ-
ent client will visualize a WOI with a size of 512, with
(356,356) as origin, and at the same resolution level.

JPEG2000

images

JPIP Server

o Proxy N
8! A

g

£: v

8:

o | Proxy 1
Q:

=

Clientl [~ Client M

Figure 4: Architecture used in the experimental tests.

These two visualizations were made for each system to
compare the classic JPIP system to the proposed system.

In Figure 5 the values of the PSNR (in dB) of the
WOI obtained at every time ¢ for the first 50 seconds of
the communication are shown. Here, it is supposed that
the server connection bandwidth is on average 4KB/secs.
On the other hand, the connection bandwidth of the first
proxy in the client/server connection is only limited by the
architecture of the local net where the first proxy is situ-
ated. For the experimental tests, it has been supposed that
this bandwidth is 4MB/secs.

Experimental results in Figure 5 show that the speed of
the reconstruction of the WOI, for the second visualiza-
tion in the proposed system, is quite higher than the clas-
sic JPIP system. It means that, at any time, the Cached
JPIP system obtains better quality of the image than the
classic JPIP system. This speed would be incremented as
much as more requests of the same image are made.

In this simulation tests, the delay produced by the re-

U
1]
1
50 ,/’
m 40 _
Z
x
P — Cached JPIP
2 30 -- JPIP .
20 -
10 1 1 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45 50

Time in seconds

Figure 5: Rate-distortion results from experimental tests.

ception of the blocks references was not taken into ac-
count. It was done in this way because of the following
two reasons:

o the requests of blocks are carried out in parallel with
the reception of the block references,

e it is possible to compress the first server response,
exploiting the feature of the algorithms proposed in
the HTTP/1.1 protocol that allows to decompress the
data “on-the-fly”.

5 Conclusions

In image transmission systems similar to that depicted in
Figure 4, frequently appearing in the Internet, our exper-
imental tests have shown that the classic JPIP system is
rather inefficient. It has been proved that this happens be-
cause JPIP does not exploit the redundancy existing in the
requests of different clients for WOlIs of a set of remote
images. This redundancy can be absorbed quite efficiently
by the Web proxies using the proposed system (Cached
JPIP). This proposed system coexists with the classical
JPIP system and it requires minimal modifications.

Acknowledgments. This work has been partially sup-
ported by the Spanish CICYT through grants TIC99-0361
and T1C2002-00228.

References

[1]

[2]

[3]

[4]

[5]

R. Fielding, J. Gettys, J. Mogul, H. Frystyk,
L. Masinter, P. Leach, and T. Berners-Lee.
Hypertext Transfer ~ Protocol — HTTP/1.1.
http://www.ietf.org/rfc/rfc2616.txt, June 1999.

ISO/IEC 15444, Information Technology —
JPEG2000 Image Coding System — Part 1. Core
coding system, 2000.

ISO/IEC 15444, Information Technology -
JPEG2000 Image Coding System — Part 9: In-
teractive tools, APIs and protocols, 2003.

A. Skodras, C. Christopoulos, and T. Ebrahimi. The
JPEG 2000 Still Image Compression Standard. IEEE
Sgnal Processing Magazine, pages 36-58, Septem-
ber 2001.

D.S. Taubman and Marcellin. M\W. JPEG2000.
Image Compression Fundamentals, Sandards and
Practice. Kluwer Academic Publishers, 2002.

