

DISTRIBUTED AND
PARALLEL SYSTEMS
CLUSTER AND
GRID COMPUTING

THE KLUWER INTERNATIONAL SERIES IN
ENGINEERING AND COMPUTER SCIENCE

DISTRIBUTED AND
PARALLEL SYSTEMS
CLUSTER AND
GRID COMPUTING

edited by

Zoltán Juhász
University of Veszprém, Veszprém, Hungary

Péter Kacsuk
MTA SZTAKI, Budapest, Hungary

Dieter Kranzlmüller
Johannes Kepler University, Linz, Austria

Springer

eBook ISBN: 0-387-23096-3
Print ISBN: 0-387-23094-7

Print ©2005 Springer Science + Business Media, Inc.

All rights reserved

No part of this eBook may be reproduced or transmitted in any form or by any means, electronic,
mechanical, recording, or otherwise, without written consent from the Publisher

Created in the United States of America

Boston

©2005 Springer Science + Business Media, Inc.

Visit Springer's eBookstore at: http://www.ebooks.kluweronline.com
and the Springer Global Website Online at: http://www.springeronline.com

Contents

Preface ix

Part I Grid Systems

glogin - Interactive Connectivity for the Grid
Herbert Rosmanith and Jens Volkert

Parallel Program Execution Support in the JGrid System
Szabolcs Pota, Gergely Sipos, Zoltan Juhasz and Peter Kacsuk

VL-E: Approaches to Design a Grid-Based Virtual Laboratory
Vladimir Korkhov, Adam Belloum and L.O. Hertzberger

Scheduling and Resource Brokering within the Grid Visualization Kernel
Paul Heinzlreiter, Jens Volkert

Part II Cluster Technology

Message Passing vs. Virtual Shared Memory, a Performance Comparison
Wilfried N. Gansterer and Joachim Zottl

MPI-I/O with a Shared File Pointer Using a Parallel Virtual File System
Yuichi Tsujita

An Approach Toward MPI Applications in Wireless Networks
Elsa M. Macías, Alvaro Suárez, and Vaidy Sunderam

Deploying Applications in Multi-SAN SMP Clusters
Albano Alves, António Pina, José Exposto and José Rufino

13

21

29

3

39

47

55

63

vi

Part III Programming Tools

Monitoring and Program Analysis Activities with DeWiz
Rene Kobler, Christian Schaubschläger, Bernhard Aichinger,
Dieter Kranzlmüller, and Jens Volkert

Integration of Formal Verification and Debugging Methods in
P-GRADE Environment
Róbert Lovas, Bertalan Vécsei

Tools for Scalable Parallel Program Analysis - Vampir NG and DeWiz
Holger Brunst, Dieter Kranzlmüller, Wolfgang E. Nagel

Process Migration In Clusters and Cluster Grids
József Kovács

Part IV P-GRADE

Graphical Design of Parallel Programs With Control Based on Global
Application States Using an Extended P-GRADE Systems
M. Tudruj, J. Borkowski and D. Kopanski

Parallelization of a Quantum Scattering Code using P-GRADE
Ákos Bencsura and György Lendvay

Traffic Simulation in P-Grade as a Grid Service
T. Delaitre, A. Goyeneche, T. Kiss, G. Terstyanszky, N. Weingarten,
P. Maselino, A. Gourgoulis, and S. C. Winter.

Development of a Grid Enabled Chemistry Application
István Lagzi, Róbert Lovas, Tamás Turányi

Part V Applications

Supporting Native Applications in WebCom-G
John P. Morrison, Sunil John and David A. Power

Grid Solution for E-Marketplaces Integrated with Logistics
L. Bruckner and T. Kiss

Incremental Placement of Nodes in a Large-Scale Adaptive Distributed
Multimedia Server
Tibor Szkaliczki, Laszlo Boszormenyi

73

83

93

103

113

121

129

137

147

155

165

vii

Component Based Flight Simulation in DIS Systems
Krzysztof Mieloszyk, Bogdan Wiszniewski

173

Part VI Algorithms

Management of Communication Environments for Minimally Synchronous
Parallel ML
Frédéric Loulergue

185

Analysis of the Multi-Phase Copying Garbage Collection Algorithm
Norbert Podhorszki

193

A Concurrent Implementation of Simulated Annealing and Its Application
to the VRPTW Optimization Problem
Agnieszka Debudaj-Grabysz and Zbigniew J. Czech

201

Author Index 211

This page intentionally left blank

Preface

DAPSYS (Austrian-Hungarian Workshop on Distributed and Parallel Sys-
tems) is an international conference series with biannual events dedicated to
all aspects of distributed and parallel computing. DAPSYS started under a dif-
ferent name in 1992 (Sopron, Hungary) as a regional meeting of Austrian and
Hungarian researchers focusing on transputer-related parallel computing; a hot
research topic of that time. A second workshop followed in 1994 (Budapest,
Hungary). As transputers became history, the scope of the workshop widened
to include parallel and distributed systems in general and the DAPSYS in
1996 (Miskolc, Hungary) reflected the results of these changes. Since then,
DAPSYS has become an established international event attracting more and
more participants every second year. After the successful DAPSYS’98 (Bu-
dapest) and DAPSYS 2000 (Balatonfüred), DAPSYS 2002 finally crossed the
border and visited Linz, Austria.

The fifth DAPSYS workshop is organised in Budapest, the capital of Hun-
gary, by the MTA SZTAKI Computer and Automation Research Institute. As
in 2000 and 2002, we have the privilege again to organise and host DAPSYS
together with the EuroPVM/ MPI conference. While EuroPVM/MPI is dedi-
cated to the latest developments of the PVM and MPI message passing envi-
ronments, DAPSYS focuses on general aspects of distributed and parallel sys-
tems. The participants of the two events will share invited talks, tutorials and
social events fostering communication and collaboration among researchers.
We hope the beautiful scenery and rich cultural atmosphere of Budapest will
make it an even more enjoyable event.

Invited speakers of DAPSYS and EuroPVM/MPI 2004 are Al Geist, Jack
Dongarra, Gábor Dózsa, William Gropp, Balázs Kónya, Domenico Laforenza,
Rusty Lusk and Jens Volkert. A number of tutorials extend the regular program
of the conference providing an opportunity to catch up with latest develop-
ments: Using MPI-2: A Problem-Based Approach (William Gropp and Ewing
Lusk), Interactive Applications on the Grid - the CrossGrid Tutorial (Tomasz
Szepieniec, Marcin Radecki and Katarzyna Rycerz), Production Grid systems
and their programming (Péter Kacsuk, Balázs Kónya, Péter Stefán).

The DAPSYS 2004 Call For Papers attracted 35 submissions from 15 coun-
tries. On average we had 3.45 reviews per paper. The 23 accepted papers cover
a broad range of research topics and appear in six conference sessions: Grid
Systems, Cluster Technology, Programming Tools, P-GRADE, Applications
and Algorithms.

The organisation of DAPSYS could not be done without the help of many
people. We would like to thank the members of the Programme Committee
and the additional reviewers for their work in refereeing the submitted papers

x DISTRIBUTED AND PARALLEL SYSTEMS

and ensuring the high quality of DAPSYS 2004. The local organisation was
managed by Judit Ajpek from CongressTeam 2000 and Agnes Jancso from
MTA SZTAKI. Our thanks is due to the sponsors of the DAPSYS/EuroPVM
joint event: IBM (platinum), Intel (gold) and NEC (silver).

Finally, we are grateful to Susan Lagerstrom-Fife and Sharon Palleschi from
Kluwer Academic Publishers for their endless patience and valuable support in
producing this volume, and David Nicol for providing the WIMPE conference
management system for conducting the paper submission and evaluation.

DIETER KRANZLMÜLLER

PÉTER KACSUK

ZOLTÁN JUHÁSZ

Program Committee

M. Baker (Univ. of Portsmouth, UK)
L. Böszörményi (University Klagenfurt, Austria)
M. Bubak (CYFRONET, Poland)
Y. Cotronis (University of Athens, Greece)
J. Cunha (Universita Nova de Lisboa, Portugal)
B. Di Martino (Seconda Universita’ di Napoli, Italy)
J. Dongarra (Univ. of Tennessee, USA)
G. Dozsa (MTA SZTAKI, Hungary)
T. Fahringer (Univ. Innsbruck, Austria)
A. Ferscha (Johannes Kepler University Linz, Austria)
A. Frohner (CERN, Switzerland)
M. Gerndt (Tech. Univ. of Munich, Germany)
A. Goscinski (Daekin University, Australia)
G. Haring (University of Vienna, Austria)
L. Hluchy (II SAS, Slovakia)
Z. Juhász (University of Veszprem, Hungary)
P. Kacsuk (MTA SZTAKI, Hungary)
K. Kondorosi (Technical University of Budapest, Hungary)
B. Kónya (Univ. of Lund, Sweden)
H. Kosch (University Klagenfurt, Austria)
G. Kotsis (University of Vienna, Austria)
D. Kranzlmüller (Johannes Kepler University Linz, Austria)
D. Laforenza (CNUCE-CNR, Italy)
E. Laure (CERN, Switzerland)
T. Margalef (UAB, Spain)
L. Matyska (Univ. of Brno, Czech Rep)
Zs. Németh (MTA SZTAKI, Hungary)
T. Priol (INRIA, France)
W. Schreiner (University of Linz, Austria)
F. Spies (University de Franche-Comte, France)
P. Stefán (NIIFI, Hungary)
V. Sunderam (Emory University, USA)
I. Szeberényi (Tech. Univ. of Budapest, Hungary)
G. Terstyánszky (Westminster University, UK)
M. Tudruj (IPI PAN / PJWSTK, Poland)
F. Vajda (MTA SZTAKI, Hungary)
J. Volkert (Johannes Kepler University Linz, Austria)
S. Winter (Westminster University, UK)
R. Wismüller (Technische UniversitäT München, Germany)

This page intentionally left blank

I

GRID SYSTEMS

This page intentionally left blank

GLOGIN - INTERACTIVE CONNECTIVITY
FOR THE GRID*

Herbert Rosmanith and Jens Volkert
GUP, Joh. Kepler University Linz
Altenbergerstr. 69, A-4040 Linz, Austria/Europe
hr@gup.uni–linz.ac.at

Abstract

Keywords:

Todays computational grids are used mostly for batch processing and through-
put computing, where jobs are submitted to a queue, processed, and finally de-
livered for post-mortem analysis. The glogin tool provides a novel approach for
grid applications, where interactive connections are required. With the solution
implemented in glogin, users are able to utilize the grid for interactive applica-
tions much in the same way as on standard workstations. This opens a series of
new possibilities for next generation grid software.

grid computing, interactivity

1. Introduction

Grid environments are todays most promising computing infrastructures for
computational science [FoKe99], which offer batch processing over networked
resources. However, even in a grid environment, it may sometimes be neces-
sary to log into a grid node. Working on a node with an interactive command-
shell is much more comfortable for many tasks. For example, one might want
to check the log files of a job. Without an interactive shell, it would be neces-
sary to submit another job for the same result. This is much more impractical
than interactive access to the system.

Today, the administrators of such grid nodes accommodate this by giving
their users UNIX accounts. This has some disadvantages. Firstly, user ad-
ministration also has to be done on the UNIX level. This is an unnecessary
additional expense, since – from the grid point of view – we are already able
to identify the users by examining their certificates. Secondly, access to shell

*This work is partially supported by the EU CrossGrid project, “Development of Grid Environment for
Interactive Applications”, under contract IST-2001-32243.

4 DISTRIBUTED AND PARALLEL SYSTEMS

functionality like telnet or even secure shell [Ylon96], may be blocked by fire-
wall administrators. This leads to configurations where users are given ac-
counts on multiple machines (one without the administrative restrictions of a
prohibitive network configuration) only to be able to bounce off to the final
grid node. No need to say, that this is a very uncomfortable situation for both
the users and the administrators.

The above mentioned problem is addressed in this paper by focusing on the
following question: Is there a way to somehow connect to the grid node? The
resulting solution as described below is based on the following idea: in order
to submit jobs, one has to be able to at least contact the gatekeeper. Why don’t
we use this connection for the interactive command-shell we desire? The way
to do this is described in this paper and has been implemented as the prototype
tool glogin1.

As we work with our shell, we will recognise that we have got “true inter-
activity” in the grid. Keystrokes are sent to the grid-node only limited by the
speed of the network. Based on this approach, we might now ask how we can
control any interactive grid-application, not just shells.

This paper is organised as follows: Section 2 provides an overview of the
approach: it shows how to overcome the limitations of the Globus-gatekeeper
and get interactive connections. In Section 3, the details of how to establish
a secure interactive connection and how to run interactive commands (such as
shells and others) are shown. Section 4 compares related work in this area,
before an outlook on future work concludes this paper.

2. Overview of Approach

Limitations of Globus-Gatekeeper

As of today, various implementations of grid-middleware exist. However,
glogin has been developed for the Globus-Toolkit [GTK], an open source soft-
ware toolkit used for building grids. GT2 is the basic system used in several
grid-projects, including the EU CrossGrid project [Cros01].

A central part of GT is the Globus-gatekeeper which was designed for a
batch-job-entry system. As such, it does not allow for bidirectional communi-
cation as required by an interactive shell. Looking at the Globus programming
API, we have to understand that the connection to the Globus-gatekeeper al-
lows transportation of data in one direction only. This is done by the Globus
GASS server, a https-listener (Globus transfers all data by means of http/s),
which is set up as part of the application, reads data from the gatekeeper and
delivers it to the standard output file descriptor. A possibility for transporting
data in the opposite direction using the currently established gatekeeper–GASS
server connection is not available.

glogin - Interactive Connectivity for the Grid 5

In addition, there is another batch-job-attribute of the Globus-gatekeeper
which turns out to be preventing the implementation of an interactive shell.
It has been observed that data sent from the grid is stored into the so called
“GASS cache”. There seem to be two different polling intervals at which it
is emptied: If a program terminates fast enough, the GASS cache is emptied
at program termination time, otherwise, the GASS cache is emptied every 10
seconds, which means that the data in the cache will be stored past program
termination for 10 seconds at worst. As of Globus-2.4, there is no API call to
force emptying the cache. Thus, if one needs an interactive shell, a different
approach has to be used.

An example demonstrates this situation. Assuming we have a shell script
named “count.sh”, which outputs an incremented number every second:

If we start this job via the Globus-gatekeeper, we will see nothing for the
first 10 seconds, then, all at once, the numbers from 0 to 9 will be displayed,
followed by a another 10 second pause, after which the numbers from 10 to 19
will be displayed and so on until we terminate the job.

Getting Interactive Connections

The solution is as follows: since the connection between the GASS server
and Globus-gatekeeper can only be used for job-submission, a separate con-
nection has to be created. Once the remote program has been started on the
grid-node, it has to take care of communication itself2. Figure 1 shows the
steps performed when creating a separate connection.

(1)
(2)
(3)
(4)

the requesting client contacts the gatekeeper
the gatekeeper starts the requested service on the same node via fork()
the requested service creates a listener socket
the requesting client directly contacts the requested service

A direct connection without the Globus-gatekeeper’s interference between the
client and the service has now been established. Interactive data exchange be-
tween the peers can now take place. Since both peers make use of the Globus-
software, they can establish a secure connection easily.

We have to be aware that this approach only works with the fork at the
gatekeeper machine. At the moment, the requested service is required to run

6 DISTRIBUTED AND PARALLEL SYSTEMS

Figure 1. Setting up a separate connection

on the same machine the gatekeeper is on. It is currently not possible that
the requested service is started at some node “behind” the gatekeeper. Since
the “worker nodes” can be located in a private network [Rekh96], connection
establishment procedure would have to be reversed. However, if we limit our-
selves to passing traffic from the (private) worker-nodes to the requesting client
via the gatekeeper, we could use traffic forwarding as described below.

3. Details of the Implementation

Connection Establishment

Figure 1 above is only a general sketch. Below we provide details on imple-
mentation. On the whole, it boils down to two questions:

We talk of a “client” and a “service”. What does this mean with
respect to “glogin”? What is the “service” if we want a login-
shell?

For ease of implementation and for ease of use, glogin is both the client and the
service. In (1), glogin contacts the Globus-gatekeeper by using the Globus job
submission API and requests that a copy of itself is started in (2) on the grid-
node. glogin has an option to differentiate between client and service mode.
By specifying -r, glogin is instructed to act as the remote part of the connection.

How does the client know where to contact the service?

With “contact”, we mean a TCP-connection. In (3), the service creates a TCP-
listener and waits for a connection coming from the client in (4). Therefore it
has to somehow communicate its own port-number where it can be reached to

glogin - Interactive Connectivity for the Grid 7

the client. At this point in time, the only connection to the client is the Globus-
gatekeeper. So the service could just send the port-number to that connection.
But as we have learned earlier, all information passed back over this connec-
tion is stuck in the GASS cache until either the program terminates, the cache
overflows or 10 seconds have elapsed. Since the size of the cache is unknown
to us (and we do not want to wait 10 seconds each time we use glogin), the
method of program-termination has been chosen. So, after glogin has acquired
a port-number, it returns it via the gatekeeper connection and exits. But just
before it exits, it forks a child-process, which will inherit the listener. The lis-
tener of course has the same properties as its parent, which means that it can
be reached at the same TCP-port address. Therefore, on the other side of the
connection, the client is now able to contact the remote glogin-process at the
given address.

The mechanism of dynamic port selection also honours the contents of the
GLOBUS_TCP_PORT_RANGE environment variable, if it is set. In this case,
glogin will take care of obtaining a port-address itself by randomly probing for
a free port within the specified range. If the environment variable is not set, it
generously lets the operating system choose one.

Another option is not to use dynamic port probing at all, but a fixed address
instead. This can be specified by using the -p parameter. However, this is not
good practise, since one can never be sure if this port is already in use. At
worst, another instance of glogin run by a different user could use the same
port, which would result in swapped sessions, glogin has code which detects
this situation and terminates with an error in this case. Note that this problem
is also present when dynamic port selection is used, although it is less likely
to occur. In fact, with dynamic port selection, such a situation probably is
triggered by an intentional, malicious attempt to hijack a session.

Secure Connection Establishment
The mechanism above demonstrates how a connection can be established.

At this point, all we have is plain TCP/IP. If we were to start exchanging data
now, it would be easy to eavesdrop on the communication. Therefore, a secure
communication can be established by using the same security mechanism that
Globus already provides.

The GSS-API [Linn00] is our tool of choice: the client calls “gss_init_sec_
context”, the service calls the opposite “gss_accept_sec_context”. Now we can
easily check for hijacked sessions: the “Subject” entry from the certificate is
the key to the gridmap-file, which determines the user-id. This user-id has to
match the user-id currently in use. If it does not, then the session was hijacked
and we have to terminate instantly.

8 DISTRIBUTED AND PARALLEL SYSTEMS

Otherwise, we have a bidirectional connection ready for interactive use. All
we have to do now is to actually instruct glogin what to do.

Getting shells and other commands

glogin is responsible for (secure) communication. Following the UNIX phi-
losophy it does not take care of providing shell-functionality itself, rather, it
executes other programs which offer the required functionality. Therefore,
why not just execute those programs instead of calling glogin? The answer
is included in the description above: due to the batch-job-nature of the system,
we need a helper-program for interactivity. It is not possible to perform the
following command:

and hope to get an interactive shell from the Globus-gatekeeper.
If we want to execute interactive commands on the grid node, there is a

second requirement we have to fulfill. There are several ways of exchanging
data between programs, even if they are executed on the same machine. For
our purpose, we need a data pipe, which is the usual way of exchanging data
in UNIX. Commands usually read from standard input and write to standard
output, so if we want glogin to execute a particular command and pass its
information to the client side, we have to intercept these file descriptors. In
order to do this, we definitely need what is called a “pipe” in UNIX. But still,
if we have glogin execute a shell (e.g. bash), we will not see any response.
Why is this?

Traffic forwarding

The answer to this last question above is as follow: we have to use what is
called a “pseudo-terminal”. A pseudo terminal [Stev93] is a bidirectional pipe
between two programs, with the operating system performing some special
tasks. One of this special task is the conversion of VT100 control characters
such as CR (carriage return) or LF (line feed). This is the reason why the
command shell did not work: the keyboard generates a CR, but the system
library expects to see a LF to indicate the end of a line, EOL.

Now that we are using pseudo terminals (or PTYs), we can exploit an in-
teresting feature: we can place the PTY in “network mode” and assign IP-
addresses to it. This is pretty straight forward, because instead of adding net-
work aware code, all we need to do is to connect the “point to point proto-
col daemon” [Perk90], “pppd” to glogin. This turns our gatekeeper-node into
a “GSS router”. Once the network is properly configured, we can reach all
worked nodes by means of IP routing, even though the may be located in a
private network.

glogin - Interactive Connectivity for the Grid 9

The downside of this approach is the administrative cost: it requires system
administrator privileges to edit the ppp configuration files. It also requires
that the pppd is executing with root privileges. This means that, although this
solution is very “complete” since it forwards any IP traffic, it is probably not
very feasible for the standard user.

Another method of forwarding traffic implemented in glogin is “port for-
warding”. Instead of routing complete IP networks, port forwarding allocates
specific TCP ports and forwards the traffic it receives to the other side of the
tunnel. One port forwarded connection is specified by a 3-tuple consisting
of (bind-port, target-host, target-port), it is possible to specify multiple for-
warders on both sides of the tunnel. The worker nodes in a private network
behind the gatekeeper can connect to the glogin process running on the gate-
keeper machine, which will send the traffic to the other glogin process on the
workstation. From there, traffic will be sent to “target-host” at “target-port”.
Since the target host can also be the address of the workstation, traffic will be
sent to some application listening to the target port on the workstation.

As an additional bonus, forwarding of X11 traffic has also been imple-
mented. It differs from port forwarding in that we have to take care of authen-
tication (the X-Server may only accept clients with the matching “cookie”).
While port forwarding requires that each new remote connection results in a
new local connection, multiple X11 clients are sent to one X11 server only.

4. Related Work

The importance of an approach as provided by glogin is demonstrated by the
number of approaches that address a comparable situation or provide a similar
solution: NCSA offers a patch [Chas02] to OpenSSH [OSSH] which adds sup-
port for grid-authentication. Installation of OpenSSH on grid-nodes usually re-
quires system administrator privileges, so this option might not be available to
all users. gsh/glogin can be installed everywhere on the grid-node, even in the
users home-directory. In contrast to OpenSSH, glogin is a very small tool (27
kilobytes at the time of the writing), while sshd2 is about 960 kilobytes in size.
Unlike OpenSSH, glogin is a single program and provides all its functionality
in one file. It does not require helper-programs and configuration-files. This
means that glogin doesn’t even need to be installed - it can be submitted to the
Globus-gatekeeper along with the interactive application. OpenSSH requires
some installation effort - glogin requires none.

Interactive sessions on the grid are also addressed in [Basu03]. This solution
is based on using VNC [Rich98], and can be compared to X11 -forwarding with
gsh/glogin. In practise, it has turned out that VNC is a useful but sometimes
slow protocol with unreliable graphic operations. With glogin, we have a local
visualisation frontend and a remote grid-application, which can communicate

10 DISTRIBUTED AND PARALLEL SYSTEMS

over a UNIX pipe or TCP sockets. This architecture is not possible when
using VNC, since the visualisation frontend will also run remotely. Since this
solution doesn’t require pseudo-terminals, VPNs with Globus cannot be built.

In [Cros04], a method for redirecting data from the standard input, output
and error filedescriptors is shown. This functionality is similar to glogin’s fea-
ture of tunneling data from unnamed UNIX pipes over the grid. However, there
is no possibility for redirecting traffic from TCP-sockets. This solution also
seems to require the “Migrating Desktop” [KuMi02], a piece of software avail-
able for CrossGrid [Cros01]. Therefore, its usage is restricted to the CrossGrid
environment. Like the solution presented by HP, building VPNs is not possible
since pseudo-terminals are not used.

5. Conclusions and Future Work
The glogin tool described in this paper provides a novel approach to inter-

active connections on the grid. glogin itself has been implemented using the
traditional UNIX approach “keep it simple”. By using functionality available
in the Globus toolkit and the UNIX operating system, interactive shells are
made available for grid environments. With glogin, users can thus perform
interactive commands in the grid just as on their local workstations.

The glogin tool is part of the Grid Visualisation Kernel [Kran03], which
attempts to provide visualisation services as a kind of grid middleware exten-
sion. However, due to successful installation of glogin and the many requests
received by the grid community, glogin has been extracted and packaged as a
stand-alone tool.

Besides the basic functionality described in this paper, glogin has been ex-
tended towards forwarding arbitrary TCP-traffic the same way ssh does: this
includes securely tunneling X11-connections over the grid as well as build-
ing VPNs and supporting multiple local and remote TCP-port-forwarders. The
usability of these features with respect to interactive applications has to be
investigated. Further research will explore the cooperation of glogin with
GT3/OGSA and the PBS jobmanager.

Acknowledgments
The work described in this paper is part of our research on the Grid Visu-

alization Kernel GVK, and we would like to thank the GVK team for their
support. More information on GVK can be found at

http://www.gup.uni-linz.ac.at/gvk

Notes

1. More information about glogin and executables can be downloaded at
http://www.gup.uni-linz.ac.at/glogin

glogin - Interactive Connectivity for the Grid 11

2. This solution has already been shown at the CrossGrid-Conference in Poznan in summer 2003, but
at that time, secure communication between the client and the remote program had not been implemented.

References

[Basu03] Sujoy Basu; Vanish Talwar; Bikash Agarwalla; Raj Kumar: Interactive Grid Archi-
tecture for Application Service Providers, Technical Report, available on the internet from
http://www.hpl.hp.com/techreports/2003/HPL-2003-84R1.pdf
July 2003

[Chas02] Philips, Chase; Von Welch; Wilkinson, Simon: GSI-Enabled OpenSSH
available on the internet from http://grid.ncsa.uiuc.edu/ssh/
January 2002

[Cros01] The EU-CrossGrid Project, http://www.crossgrid.org

[Cros04] Various Authors: CrossGrid Deliverable D3.5: Report on the Result of the WP3 2nd
and 3rd Prototype pp 52-57, available on the internet from
http://www.eu-crossgrid.org/Deliverables/M24pdf/CG3.0-D3.5-v1.2-PSNC010-
Proto2Status.pdf
February 2004

[FoKe99] Foster, Ian; Kesselmann, Carl: The Grid, Blueprint for a New Computing Infrastruc-
ture, Morgan Kaufmann Publishers, 1999

[GTK] The Globus Toolkit, http://www.globus.org/toolkit

[KuMi02] M. Kupczyk, N. Meyer, B. Palak, P.Wolniewicz: Roam-
ing Access and Migrating Desktop, Crossgrid Workshop Cracow, 2002

[Kran03] Kranzlmüller, Dieter; Heinzlreiter, Paul; Rosmanith, Herbert; Volkert, Jens: Grid-
Enabled Visualisation with GVK, Proceedings First European Across Grids Conference,
Santiago de Compostela, Spain, pp. 139-146, February 2003

[Linn00] Linn, J.: Generic Security Service Application Program Interface, RFC 2743, Internet
Engineering Task Force, January 2000

[OSSH] The OpenSSH Project, http://www.openssh.org

[Perk90] Perkins; Drew D.: Point-to-Point Protocol for the transmission of multi-protocol data-
grams over Point-to-Point links, RFC 1171, Internet Engineering Task Force, July 1990

[Rekh96] Rekhter, Yakov; Moskowitz, Robert G.; Karrenberg, Daniel; de Groot, Geert Jan;
Lear, Eliot: Address Allocation for Private Internets, RFC 1918, Internet Engineering Task
Force, February 1996

[Rich98] T. Richardson, Q. Stafford-Fraser, K. Wood and A. Hopper: Virtual Network Com-
puting, IEEE Internet Computing, 2(1):33-38, Jan/Feb 1998

[Stev93] W. Richard Stevens Advanced Programming in the UNIX Environment, Addison-
Wesley Publishing Company, 1993

[Ylon96] Ylönen, Tatu. SSH Secure Login Connections over the Internet, Sixth USENIX Secu-
rity Symposium, Pp. 37 - 42 of the Proceedings, SSH Communications Security Ltd. 1996
http://www.usenix.org/publications/library/proceedings/sec96/full_papers/ylonen/

This page intentionally left blank

PARALLEL PROGRAM EXECUTION
SUPPORT IN THE JGRID SYSTEM*

Szabolcs Pota1, Gergely Sipos2, Zoltan Juhasz1,3 and Peter Kacsuk2

1Department of Information Systems, University of Veszprem, Hungary
2Laboratory of Parallel and Distributed Systems, MTA-SZTAKI, Budapest, Hungary
3
Department of Computer Science, University of Exeter, United Kingdom

pota@irt.vein.hu, sipos@sztaki.hu, juhasz@irt.vein.hu, kacsuk@sztaki.hu

Abstract

Keywords:

Service-oriented grid systems will need to support a wide variety of sequential
and parallel applications relying on interactive or batch execution in a dynamic
environment. In this paper we describe the execution support that the JGrid
system, a Jini-based grid infrastructure, provides for parallel programs.

service-oriented grid, Java, Jini, parallel execution, JGrid

1. Introduction

Future grid systems, in which users access application and system services
via well-defined interfaces, will need to support a more diverse set of execution
modes than those found in traditional batch execution systems. As the use of
the grid spreads to various application domains, some services will rely on im-
mediate and interactive program execution, some will need to reserve resources
for a period of time, while some others will need a varying set of processors.
In addition to the various ways of executing programs, service-oriented grids
will need to adequately address several non-computational issues such as pro-
gramming language support, legacy system integration, service-oriented vs.
traditional execution, security, etc.

In this paper, we show how the JGrid [1] system – a Java/Jini [2] based
service-oriented grid system – meets these requirements and provides support
for various program execution modes. In Section 2 of the paper, we discuss
the most important requirements and constraints for grid systems. Section 3 is
the core of the paper; it provides an overview of the Batch execution service

*This work has been supported by the Hungarian IKTA programme under grant no. 089/2002.

14 DISTRIBUTED AND PARALLEL SYSTEMS

that facilitates batch-oriented program execution, and describes the Compute
Service that can execute Java tasks. In Section 4 we summarise our results,
then close the paper with conclusions and discussion on future work.

2. Execution Support for the Grid
Service-orientation provides a higher level of abstraction than resource- ori-

ented grid models; consequently, the range of applications and uses of service-
oriented grids are wider than that of computational grids. During the design
of the JGrid system, our aim was to create a dynamic, Java and Jini based
service-oriented grid environment that is flexible enough to cater for the vari-
ous requirements of future grid applications.

Even if one restricts the treatment to computational grids only, there is a set
of conflicting requirements to be aware of. Users would like to use various
programming languages that suit their needs and personal preferences while
enjoying platform independence and reliable execution. Interactive as well
as batch execution modes should be available for sequential and parallel pro-
grams. In addition to the execution mode, a set of inter-process communication
models need to be supported (shared memory, message passing, client-server).
Also, there are large differences in users’ and service providers’ attitude to
grid development; some are willing to develop new programs and services,
others want to use their existing, non-grid systems and applications with no or
little modification. Therefore, integration support for legacy systems and user
programs is inevitable.

3. Parallel execution support in JGrid
In this section we describe how the JGrid system provides parallel execu-

tion support and at the same time meets the aforementioned requirements con-
centrating on (i) language, (ii) interprocess communication, (iii) programming
model and (iv) execution mode.

During the design of the JGrid system, our aim was to provide as much
flexibility in the system as possible and not to prescribe the use of a particular
programming language, execution mode, and the like. To achieve this aim,
we have decided to create two different types of computational services. The
Batch Execution and Compute services complement each other in providing
the users of JGrid with a range of choices in programming languages, execution
modes, interprocess communication modes.

As we describe in the remaining part of this section in detail, the Batch
Service is a Jini front end service that integrates available job execution en-
vironments into the JGrid system. This service allows one to discover legacy
batch execution environments and use them to run sequential or parallel legacy
user programs written in any programming language.

Parallel Program Execution Support in the JGrid System 15

Batch execution is not a solution to all problems however. Interactive execu-
tion, co-allocation, interaction with the grid are areas where batch systems have
shortcomings. The Compute Service thus is special runtime system developed
for executing Java tasks with maximum support for grid execution, including
parallel program execution, co-allocation, cooperation with grid schedulers.
Table 1 illustrates the properties of the two services.

The Batch Execution Service

The Batch Execution Service provides a JGrid service interface to traditional
job execution environments, such as LSF, Condor, Sun Grid Engine. This
interface allows us to integrate legacy batch systems into the service-oriented
grid and users to execute legacy programs in a uniform, runtime-independent
manner.

Due to the modular design of the wrapper service, various batch systems
can be integrated. The advantage of this approach is that neither providers nor
clients have to develop new software from scratch, they can use well-tested
legacy resource managers and user programs. The use of this wrapper service
also has the advantage that new grid functionality (e.g. resource reservation,
monitoring, connection to other grid services), normally not available in the
native runtime environments, can be added to the system.

In the rest of Section 3.1, the structure and operation of one particular im-
plementation of the Batch Execution Service, an interface to the Condor [3]
environment is described.

Internal Structure. As shown in Figure 1, the overall batch service con-
sists of the native job runtime system and the front end JGrid wrapper service.
The batch runtime includes the Condor job manager and N cluster nodes. In
addition, each node also runs a local Mercury monitor [4] that receives exe-
cution information from instrumented user programs. The local monitors are
connected to a master monitor service that in turn combines local monitoring

16 DISTRIBUTED AND PARALLEL SYSTEMS

Figure 1. Structure and operation of the Batch Execution Service.

information and exports it to the client on request. Figure 1 also shows a JGrid
information service entity and a client, indicating the other required compo-
nents for proper operation.

The resulting infrastructure allows a client to dynamically discover the avail-
able Condor [3] clusters in the network, submit jobs into these resource pools,
remotely manage the execution of the submitted jobs, as well as monitor the
running applications on-line.

Service operation. The responsibilities of the components of the service
are as follows. The JGrid service wrapper performs registration within the
JGrid environment, exports the proxy object that is used by a client to access
the service and forwards requests to the Condor job manager. Once a job
is received, the Condor job manager starts its normal tasks of locating idle
resources from within the pool, managing these resources and the execution of
the job. If application monitoring is required, the Mercury monitoring system
is used to perform job monitoring. The detailed flow of execution is as follows:

1

2

Upon start-up, the Batch Execution Service discovers the JGrid informa-
tion system and registers a proxy along with important service attributes
describing e.g. the performance, number of processors, supported mes-
sage passing environments, etc.

The client can discover the service by sending an appropriate service
template containing the Batch service interface and required attribute
values to the information system. The Batch Executor’s resource prop-

Parallel Program Execution Support in the JGrid System 17

3

4

5

6

erties are described by Jini attributes that can be matched against the
service template.

The result of a successful lookup operation results in the client receiving
the proxy-attribute pair of the service.

The client submits the job by calling appropriate methods on the service
proxy. It specifies as method arguments the directory of the job in the
local file system, a URL through which this directory can be accessed,
and every necessary piece of information required to execute the job
(command line parameters, input files, name of the executable, etc.).

The proxy archives the job into a Java archive (JAR) file (5a), then sends
the URL of this file to the front end service (5b).

The front end service downloads the JAR file through the client HTTP
server (6a), then extracts it into the file system of a submitter node of the
Condor pool (6b).

As a result of the submit request, the client receives a proxy object rep-
resenting the submitted job. This proxy is in effect a handle to the job,
it can be used to suspend or cancel the job referenced by it. The proxy
also carries the job ID the Mercury monitoring subsystem uses for job
identification.

The client obtains the monitor ID then passes it - together with the MS
URL it obtained from the information system earlier - to the Mercury
client.

The Mercury client subscribes for receiving the trace information of the
job.

After the successful subscription, the remote job can be physically started
with a method call on the job proxy.

The proxy instructs the remote front end service to start the job, which
then submits it to the Condor subsystem via a secure native call. De-
pending on the required message passing mode, the parallel program
will execute under the PVM or MPI universe. Sequential jobs can run
under the Vanilla, Condor or Java universe.

The local monitors start receiving trace events from the running pro-
cesses.

The local monitor forwards the monitoring data to the master monitor
service

7

8

9

10

11

12

13

18 DISTRIBUTED AND PARALLEL SYSTEMS

14 The master monitor service sends the global monitoring data to the in-
terested client.

Once the job execution is finished, the client can download the result files
via the job proxy using other method calls either automatically or when re-
quired. The files then will be extracted to the location in the local filesystem as
specified by the client.

It is important to note that the Java front end hides all internal implementa-
tion details, thus clients can use a uniform service interface to execute, manage
and monitor jobs in various environments. In addition, the wrapper service can
provide further grid-related functionalities not available in traditional batch ex-
ecution systems.

The Compute Service

Our aim with the Compute Service is to develop a dynamic Grid execution
runtime system that enables one to create and execute dynamic grid applica-
tions. This requires the ability to execute sequential and parallel interactive and
batch applications, support reliable execution using checkpointing and migra-
tion, as well as enable the execution of evolving and malleable [5] programs in
a wide area grid environment.

Malleable applications are naturally suited to Grid execution as they can
adapt to a dynamically changing grid resource pool. The execution of these
applications, however, requires strong interaction between the application and
the grid; thus, suitable grid middleware and application programming models
are required.

Task Execution. Java is a natural choice for this type of execution due to its
platform independence, mobile code support and security, hence the Compute
Service, effectively, is a remote JVM exported out as a Jini service. Tasks sent
for execution to the service are executed within threads that are controlled by
an internal thread pool. Tasks are executed in isolation, thus one task cannot
interfere with another task from a different client or application.

Clients have several choices for executing tasks on the compute service. The
simplest form is remote evaluation, in which the client sends the executable
object to the service in a synchronous or asynchronous execute() method
call. If the task is sequential, it will execute in one thread of the pool. If it uses
several threads, on single CPU machines it will run concurrently, on shared
memory parallel computers it will run in parallel.

A more complex form of execution is remote process creation, in which case
the object sent by the client will be spawned as a remote object and a dynamic
proxy created via reflection, implementing the TaskControl and other client-
specified interfaces, is returned to the client. This mechanism allows clients

Parallel Program Execution Support in the JGrid System 19

e.g. to upload the code to the Compute Service only once and call various
methods on this object successively. The TaskControl proxy will have a
major role in parallel execution as shown later in this section.

A single instance of the Compute Service cannot handle a distributed mem-
ory parallel computer and export it into the grid. To solve this problem we
created a ClusterManager service that implements the same interface as the
Compute Service, hence appears to clients as another Compute Service in-
stance, but upon receiving tasks, it forwards them to particular nodes of the
cluster. It is also possible to create a hierarchy of managers e.g. for connecting
and controlling a set of clusters of an institution.

The major building blocks of the Compute Service are the task manager,
the executing thread pool and the scheduler. The service was designed in a
service-oriented manner, thus interchangeable scheduling modules implement-
ing different policies can be configured to be used by the service.

Executing Parallel Applications. There are several approaches to execut-
ing parallel programs using Compute Services. If a client discovers a multi-
processor Compute Service, it can run a multi-threaded application in parallel.
Depending on whether the client looks up a number of single-processor Com-
pute Services (several JVMs) or one multi-processor service (single JVM), it
will need to use different communication mechanisms. Our system at the time
of writing can support communication based on (i) MPI-like message pass-
ing primitives and (ii) high-level remote method calls. A third approach using
JavaSpaces (a Linda-like tuple space implementation) is currently being inte-
grated into the system.

Programmers familiar with MPI can use Java MPI method calls for commu-
nication. They are similar to mpiJava [6] and provided by the Compute Service
as system calls. The Compute Service provides the implementation via system
classes. Once the subtasks are allocated, processes are connected by logical
channels. The Compute Service provides transparent mapping of task rank
numbers to physical addresses and logical channels to physical connections to
route messages. The design allows one to create a wide-area parallel system.

For some applications, MPI message passing is too low-level. Hence, we
also designed a high level object-oriented communication mechanism that al-
lows application programmers to develop tasks that communicate via remote
method calls. As mentioned earlier, as the result of remote process creation, the
client receives a task control proxy. This proxy is a reference to the spawned
task/process and can be passed to other tasks. Consequently, a set of remote
tasks can be configured to store references to each other in an arbitrary way.
Tasks then can call remote methods on other tasks to implement the communi-
cation method of their choice. This design results in a truly distributed object
programming model.

20 DISTRIBUTED AND PARALLEL SYSTEMS

4. Results

Both the Batch Execution Service and the Compute Service have been im-
plemented and tests on an international testbed have been performed. The
trial runs demonstrated (i) the ease with which our services can be discovered
dynamically with JGrid, (ii) the simplicity of job submission to native batch
environments via the Batch Execution Service, and the (iii) ability of the Com-
pute Service to run tasks of wide-area parallel programs that use either MPI or
remote method call based communication.

Further tests and evaluations are being conducted continuously to determine
the reliability of our implementations and to determine the performance and
overheads of the system, respectively.

5. Conclusions and Future Work
This paper described our approach to support computational application in

dynamic, wide-area grid systems. The JGrid system is a dynamic, service-
oriented grid infrastructure. The Batch Execution Service and the Compute
Service are two core computational services in JGrid; the former provides
access to legacy batch execution environments to run sequential and parallel
programs without language restrictions, while the latter represents a special
runtime environment that allows the execution of Java tasks using various in-
terprocess communication mechanisms if necessary.

The system has demonstrated that with these facilities application program-
mers can create highly adaptable, dynamic, service-oriented applications. We
continue our work with incorporating high-level grid scheduling, service bro-
kers, migration and fault tolerance into the system.

References
[1]

[2]

[3]

[4]

[5]

[6]

The JGrid project: http://pds.irt.vein.hu/jgrid

Sun Microsystems, Jini Technology Core Platform Specification, http://www.sun.com/
jini/specs.

M. J. Litzkow, M. Livny and M. W. Mutka, “Condor: A Hunter of Idle Workstations” 8th
International Conference on Distributed Computing Systems (ICDCS ’88), pp. 104-111,
IEEE Computer Society Press, June 1988.

Z. Balaton, G. Gombás, “Resource and Job Monitoring in the Grid”, Proc. of the Euro-Par
2003 International Conference, Klagenfurt, 2003.

D. G. Feitelson and L. Rudolph, “Parallel Job Scheduling: Issues and Approaches” Lecture
Notes in Computer Science, Vol. 949, p. 1-??, 1995.

M. Baker, B. Carpenter, G. Fox and Sung Hoon Koo, “mpiJava: An Object-Oriented Java
Interface to MPI”, Lecture Notes in Computer Science, Vol. 1586, p. 748-??, 1999.

VL-E: APPROACHES TO DESIGN A GRID-BASED
VIRTUAL LABORATORY

Vladimir Korkhov, Adam Belloum and L.O. Hertzberger
FNWI,
University of Amsterdam,
Kruislaan 403, 1098 SJ, Amsterdam, The Netherlands

vkorkhov@science.uva.nl
adam@science.uva.nl

bob@science.uva.nl

Abstract

Keywords:

This paper addresses the issues of building Virtual Laboratory environments and
presents architecture of VL-E - a Grid-enabled virtual laboratory being devel-
oped at University of Amsterdam. The Virtual Laboratory concepts are usu-
ally described as having the objective to bridge the gap between the application
layer and lower layers that compose the infrastructure needed to support these
applications. In the Grid environment the core layer of middleware is usually
provided by toolkits like Globus ([Foster and Kesselman, 1998]) that enable
low-level functionality and encourage building higher level toolkits that would
offer new facilities, such as a robust access to different management facilities,
adequate fault tolerance in distributed systems, reliable super-scheduling tech-
niques, workflow support, web portal technology, advanced information man-
agement techniques and virtual reality visualization. Here we present a struc-
tural overview of VL-E and discuss some related issues brought up by nature of
Grid environment.

Grid, virtual laboratory, process flow, data flow, resource management

Introduction

The concepts of virtual laboratories have been introduced to support e-
Science, they address the tools and instruments that are designed to aid scien-
tists in performing experiments by providing high-level interface to Grid envi-
ronment. Virtual laboratories can spread over multiple organizations enabling
usage of resources across different organization domains. Potential e-Science
applications manipulate large data sets in distributed environment; this data is
to be processed regardless its physical place. It is thus of extreme importance
for the virtual laboratories to be able to process and manage the produced data,
to store it in a systematic fashion, and to enable a fast access to it. The vir-

22 DISTRIBUTED AND PARALLEL SYSTEMS

tual laboratory concepts encapsulate the simplistic remote access to external
devices as well as the management of most of the activities composing the
e-Science application and the collaboration among geographically distributed
scientists.

In essence the aim of the virtual laboratories is to support the e-Science
developers and users in their research, which implies that virtual laboratories
should integrate software designed and implemented independently and coor-
dinate any interaction needed between these components. Virtual laboratories
architecture thus has to take care of many different aspects, including a struc-
tural view, a behavioral view, and a resource usage view.

In this paper we present architecture and some major components of VL-E
environment - a virtual laboratory being developed at University of Amster-
dam.

1. The Virtual Laboratory Architecture

The proposed architecture for VL-E environment is composed of two types
of components: permanent and transient. The life cycle of the transient com-
ponents follows the life cycle of common scientific experiment. The transient
components are created when a scientist or a group of scientists start an exper-
iment; they are terminated when the experiment is finished.

The core component of VL-E concept is a virtual experiment composed of
a number of processing modules which communicate with each other. From
the VL-E users point of view these modules are processing elements, users
can select them from a library and connect them via pairs of input and output
ports to define a data flow graph, referred to as a topology. From a resource
management point of view the topology can be regarded as a meta-application.
The modules can be considered as sub-tasks of that meta-application which
has to be mapped to Grid environment in a most efficient way. One of the aims
of our research work is the development of effective resource management
and scheduling schemes for Grid environment and VL-E toolkit. The model
of the VL scientific experiment we are considering in the work is extensively
explained in [Belloum et al., 2003].

The components of the VL-E architecture are presented on figure 1. These
components are:

Session Factory: when contacted by a VL client, it creates an instance
of the Session Manager (SM) which controls all the activities within a
session.

Intersession Collaboration Manager: controls and coordinates the inter-
action of VL end-users cross sessions.

VL-E: Approaches to design a Grid-based Virtual Laboratory 23

Figure 1. VL-E Architecture

Module deployment: when a resource has been selected to execute an
end-user task (module), this component takes care of deploying the mod-
ule on this host and ensures that all the needed libraries are available.

Module cache: this component is in charge of optimizing the deploy-
ment of the VL module.

Module repository: this repository stores all the modules that can be
used to compose a virtual experiment.

VIMCO: is the information management platform of VL-E, it handles
and stores all the information about virtual experiments.

Session Manager: controls all the activities within the session

RTSM (Run-Time System Manager): performs the distribution of tasks
on Grid-enabled resources, starts distributed experiment and monitors
its execution.

RTSM Factory: creates an instance of Run-Time System Manager (RTSM)
for each experiment

24 DISTRIBUTED AND PARALLEL SYSTEMS

Resource Manager: performs resource discovery, location and selection
according to module requirements; maps tasks to resources to optimize
experiment performance utilizing a number of algorithms and schedul-
ing techniques.

Study, PFT and Topology Managers: components that implement the
concept of study introduced in section 2.

Assistant: supports the composition of an experiment by providing tem-
plates and information about previously conducted experiments.

2. The concept of study in VL-E

One of the fundamental challenges in e-Science is the extraction of useful
information from large data sets. This triggers the need for cooperation of
multi-disciplinary teams located at geographically dispersed sites.

To achieve these goals, experiments are embedded in the context of a study.
A study is about the meaning and the processing of data. It includes descrip-
tions of data elements (meta-data) and process steps for handling the data. A
study is defined by a formalized series of steps, also known as process flow,
intended to solve a particular problem in a particular application domain. The
process steps may generate raw data from instruments, may contain data pro-
cessing, may retrieve and store either raw or processed data and may contain
visualization steps.

A Process Flow Template (PFT) is used to represent such a formalized work-
flow (Fig. 2). A study is activated by instantiating such a PFT. This instantia-
tion is called a process flow instantiation (PFI). A user is guided through this
PFI using context-sensitive interaction. The process steps in the PFT represent
the actual data flow in an experiment. This usually entails the data flow stem-
ming from an instrument through the analysis software to data storage facili-
ties. Consequently, an experiment is represented by a data flow graph (DFG).
This DFG usually contains experiment specific software entities as well as
generic software entities. We will call these self-contained software entities as
modules.

3. Resource management in VL-E

One of the focuses of our research is the development of a resource man-
agement system for the VL-E environment. In this context, applications are
presented by a set of connected by data flow independent modules that per-
form calculations and data processing, access data storage or control remote
devices. Each module is provided with a “module description file” that in par-
ticular contains information about module resource requirements (called also
quality of service requirements - QoS). Our intention is to build a resource

VL-E: Approaches to design a Grid-based Virtual Laboratory 25

Figure 2. Process Flow Template (PFT)

management system that performs scheduling decisions based on this infor-
mation about modules requirements, dynamic resource information from Grid
information services (e.g. MDS, [Czajkowski et al., 2001]) and forecasts of
resource load (e.g. NWS, [Wolski et al., 1999]).

In the current design of VL-E architecture the Resource Manager (RM) is
connected to Run-Time System Manager Factory (RTSMF) which receives a
request to run an application (composed of a set of connected modules) from
the Front-End and sends the data about the submitted application with mod-
ule requirements (QoS) to RM, which performs resource discovery, location
and selection according to module requirements. RM composes a number of
candidate schedules that are estimated using specified cost model and resource
state information and predictions, optimal schedule is selected, resources used
in the schedule reserved, and the schedule is transmitted back to RTSMF. Then
RTSMF translates the schedule to Run-Time System for execution. During the
execution RM continues monitoring the resources in case rescheduling will be
needed.

The resource manager operates using application information, available re-
source information, cost and application models (Fig. 3). Application infor-
mation includes requirements, which define quality of service requested by
modules. These requirements contain values such as the amount of memory
needed, the approximate number of processing cycles (i.e. processor load),

26 DISTRIBUTED AND PARALLEL SYSTEMS

Figure 3. Resource Manager

the storage and the communication load between modules. We use RSL-like
language to specify these requirements (RSL is a resource specification Lan-
guage used in a the Globus toolkit to specify the job to be submitted to the Grid
Resource Allocation Manager, [Czajkowski et al., 1998]). Resource informa-
tion is obtained from the Grid information service (MDS) which also provides
forecasts of resource state from Network Weather Service (NWS). This helps
to estimate resource load in specified time frame in the future and model appli-
cation performance. The cost and application models are used by the resource
manager to evaluate the set of candidate schedules for the application. We have
conducted a number of experiments using different types of meta-scheduling
algorithms (several heuristic algorithms and simulated annealing technique),
the results and analysis are presented in [Korkhov et al., 2004].

4. Related Work

During the last five years, both research and industrial communities have
invested a considerable amount of effort in developing new infrastructures that
support e-Science. Several research projects worldwide have started with the
aim to develop new methods, techniques, and tools to solve the increasing
list of challenging problems introduced by E-applications, such as the Virtual
Laboratories being developed at Monash University, Australia ([Buyya et al.,
2001]), Johns Hopkins University, USA (http://www.jhu.edu/virtlab/virtlab.
html), or at the University of Bochum in Germany ([Rohrig and Jochheim,
1999]). One important common feature in all these Virtual Laboratories pro-
jects is the fact that they base their research work on the Grid technology.
Furthermore, a number of these projects try to tackle problems related to a
specific type of E-application. At Johns Hopkins University researchers are
aiming at building a virtual environment for education over the WWW. Their
counterparts in Germany are working on a collaborative environment to allow
performing experiments in geographically distributed groups. The researchers
at Monash University are working on development of an environment where
large-scale experimentation in the area of molecular biology can be performed.

VL-E: Approaches to design a Grid-based Virtual Laboratory 27

Figure 4. MRI scanner experiment

These are just a few examples of research projects targeting issues related to e-
Science. Similar research projects are under development to support computa-
tional and data intensive applications such as the iVDGL (International Virtual
Data Grid Laboratory, http://www.ivdgl.org/workteams/facilities), DataTAG
(Research and Technological development for TransAtlantic Grid) ([D.Bosio
et al., 2003]), EU-DataGrid (PetaBytes, across widely distributed scientific
communities), PPDG (Particle Physics Data Grid, http://www.ppdg.net/), and
many others.

The VL-E approach differs from the other Virtual laboratory initiatives since
it took the challenge to address generic aspects of the expected virtual labora-
tory infrastructure. The aim of the VL-E project is not to provide a solution
for a specific E-application; instead, VL-E aims at supporting various classes
of applications.

5. Conclusions
In this paper we introduced the architecture of VL-E environment which

supports a range of e-Science applications (material analysis experiment MAC-

28 DISTRIBUTED AND PARALLEL SYSTEMS

SLab, medical experiment with MRI scanner and some others). The proposed
VL-E architecture hides the low level details of Grid environment from scien-
tists allowing them to focus only on their domain of expertise. The services
offered by the VL-E middleware shield users from the complexity of binding
different infrastructures together. An example of running VL-E experiment is
presented on figure 4. Here the topology editor window is shown along with
X output of remote applications used to retrieve and analyse data from MRI
scanner.

In this paper we described the core concept of a study that lays in the ba-
sis of our virtual experimenting framework, addressed the issues of resource
management in Grid environment. Our research on resource management is
outlined in this paper, for more details please refer to [Korkhov et al., 2004].

This work has been partially funded by the Dutch BSIK project 03019:Vir-
tual Laboratory for e-science (VL-e).

References

[Belloum et al., 2003] Belloum, A., Groep, D., Hertzberger, L., Korkhov, V., de Laat, C. T.,
and Vasunin, D. (2003). VLAM-G: A Grid-based Virtual Laboratory. Future Generation
Computer Systems, 19(2):209–217.

[Buyya et al., 2001] Buyya, R., Branson, K., Giddy, J., and Abramson, D. (2001). The virtual
laboratory: Enabling molecular modeling for drug design on the world wide grid. Technical
report, Monash University.

[Czajkowski et al., 2001] Czajkowski, K., Fitzgerald, S., Foster, I., and Kesselman, C. (2001).
Grid Information Services for Distributed Resource Sharing. In The Tenth IEEE Interna-
tional Symposium on High-Performance Distributed Computing (HPDC-10). IEEE Press.

[Czajkowski et al., 1998] Czajkowski, K., Foster, I., Karonis, N., Kesselman, C., Martin, S.,
Smith, W., and Tuecke, S. (1998). A Resource Management Architecture for Metacomput-
ing Systems. In Proceedings of IPPS/SPDP ’98 Workshop on Job Scheduling Strategies for
Parallel Processing, pages 62–82.

[D.Bosio et al., 2003] D.Bosio, J.Casey, A.Frohner, and et al, L. (2003). Next generation eu
datagrid data management. In CHEP 2003, La Jolla - CA, USA.

[Foster and Kesselman, 1998] Foster, I. and Kesselman, C. (1998). The Globus Project: A
Status Report. In IPPS/SPDP ’98 Heterogeneous Computing Workshop, pages 4–18.

[Korkhov et al., 2004] Korkhov, V., Belloum, A., and Hertzberger, L. (2004). Evaluating Meta-
scheduling Algorithms in VLAM-G Environment. In to be published at the Tenth Annual
Conference of the Advanced School for Computing and Imaging (ASCI).

[Rohrig and Jochheim, 1999] Rohrig, C. and Jochheim, A. (1999). The virtual lab for con-
trolling real experiments via internet. In IEEE International Symosium on Computer-Aided
Control System Design, CACSD ’99, Hawaii.

[Wolski et al., 1999] Wolski, R., Spring, N., and Hayes, J. (1999). The Network Weather Ser-
vice: Distributed Resource Performance Forecasting Service for Metacomputing. Journal
of Future Generation Computing Systems, Volume 15, Numbers 5-6, pp. 757-768, October,
1999., (5-6):757–768.

SCHEDULING AND RESOURCE BROKERING
WITHIN THE GRID VISUALIZATION KERNEL*

Paul Heinzlreiter, Jens Volkert
GUP Linz
Johannes Kepler University Linz
Altenbergerstr. 69
A-4040 Linz
Austria/Europe

heinzlreiter@gup.jku.at

Abstract

Keywords:

The role of grid computing as a tool for computational science which has evolved
over the past years leads to additional requirements for grid middleware. One
of these requirements is visualization support which is provided by the Grid
Visualization Kernel (GVK). To enable proper usage of grid resources for visu-
alization purposes sophisticated scheduling and resource brokering mechanisms
are required. These mechanisms enable the automatic construction of a visu-
alization pipeline taking into account the requirements specified by the user as
well as resource availability.

Scheduling, resource brokering, grid computing, visualization

1. Introduction

During the last years grid computing has evolved into a standard technique
for distributed high-performance and high-throughput computing by harness-
ing the resources of multiple organizations for running computational intensive
applications [9]. This is enabled by grid middleware toolkits such as Globus
[8], which has became the de facto standard grid middleware solution.

Compared to the rapid evolution of available middleware solutions which
currently provides a solid foundation of basic services, more application spe-
cific support by means of middleware extensions still offers a wide field for
improvements.

One of the key issues within the scientific computing domain is visualiza-
tion, which provides the scientist with the appropriate tool for result validation.

*The Grid Visualization Kernel (GVK) is partially supported by the Crossgrid Project of the European
Commission under contract number IST-2001-32243.

30 DISTRIBUTED AND PARALLEL SYSTEMS

Since typical grid computing applications operate on large datasets, the visu-
alization task itself also can benefit from the computational power available on
the grid. With this in mind, the Grid Visualization Kernel (GVK) [13], which
is composed of a set of specific visualization modules running on different grid
nodes, has been developed. GVK aims at providing the best visualization per-
formance possible given the type of the requested service and the status of the
available grid resources. This is enabled by splitting the requested visualiza-
tion pipeline into various subtasks, each of which is accomplished by a specific
visualization module.

Within this paper the main focus is put on the GVK visualization plan-
ner (VP) which identifies the required visualization subtasks and acts as a
application-specific resource broker by mapping the tasks onto the available
grid resources.

The remaining sections are structured as follows: In Section 2 an overview
over related work in field of distributed application scheduling is given. In Sec-
tion 3 an overview of the functionality of the VP is given, while the subsequent
sections elaborate the steps of the visualization planning process. Finally an
outlook on future work concludes the paper.

2. Related Work

Various approaches have already been studied in the field of scheduling for
distributed applications. A good survey of the problems arising is given in
[1]. This paper focuses on the scheduling problem for distributed applications
communicating over heterogenous networks. The described approach focuses
on providing a specific scheduler for each application, thus taking into account
the application specific requirements.

In contrast to this method [6] describes a scheduling approach which is de-
coupled from the application to be executed. This is achieved by using a per-
formance model of the job to be scheduled.

The scheduling within Nimrod/G [3] focuses on running parameter studies
on the grid. It aims at providing economy based resource trading and offers
different scheduling strategies like time minimization, cost minimization, and
no minimization, which means that the task is scheduled for execution within
the given cost and time constraints.

In [14] the scheduling approach used within the EU Crossgrid project is
presented. The Crossgrid scheduling system consists of a scheduling agent, a
resource searcher, and an application launcher. The matchmaking between jobs
and resources is done by the resource searcher. It provides the scheduling agent
with different possible sets of resources, which selects the most appropriate
one.

GVK Scheduling and Resource Brokering 31

The scheduling approach chosen for the Condor-G system [10] uses a grid
manager process, which is started locally and handles the communication with
the remote resource. It also delivers status information on the remote job to the
local Condor-G scheduler. An additional task of the grid manager is detection
of remote resource failures.

Compared to these methods the scheduling within GVK is focused onto the
visualization domain and aims specifically at creating a visualization pipeline
possibly spreading multiple grid hosts.

3. The GVK Visualization Planner

The visualization process as performed by GVK can be understood as a
series of transformations which lead from the input data to the final image.

The task of the VP is to identify a series of data transformations which have
to be applied to the data to generate the desired output. Its input is given by
the visualization request, which describes the visualization as requested by the
user of GVK. The output of the VP is a execution schedule for a set of grid
modules, which form an appropriate visualization pipeline for the requested
visualization task. The required modules are subsequently invoked using the
Globus GRAM [4] service. To enable this the VP delivers its results in the
form of RSL scripts [11].

During the visualization planning process the following informations have
to be determined:

Structure of the pipeline

Required modules

Interconnections between the modules

Visualization algorithms to be used

Execution locations for the modules

The task of the VP can be splitted into the following steps:

Task decomposition

Resource information gathering

Rendering algorithm selection

Resource mapping

Several factors are taken into account at different stages within the planning
process: The type of the requested visualization, the available software mod-
ules and the structure of the input data are evaluated during the first stage of
the planning process, the visualization task decomposition. The available grid

1

2

3

4

32 DISTRIBUTED AND PARALLEL SYSTEMS

resources are determined during stage two and are relevant for the rendering
algorithm selection and the resource mapping.

In order to cope with this complex scheduling and resource brokering prob-
lems, a top-down analysis of the problem is performed. Within the following
sections the different phases of the visualization planning process are elabo-
rated following their execution order.

4. Visualization Task Decomposition

Within the first step of the visualization planning process the transformation
of the task described by the visualization request into an ordered set of modules
has to be performed.

The main factor which is determining this phase of the planning process is
the set of available software modules. At first it is required to check if all re-
quired software modules for the pipeline are available. The VP has access to
a list of available software modules, which is provided to the VP upon invo-
cation and identifies the modules, which can be started on various grid nodes
to be included into the visualization pipeline. It identifies which visualization
modules are already available in binary form on the available execution hosts.
If that is not the case the executable can be staged to the execution host using
the Globus GASS service [2]. The input and output formats of the modules as
well as the parallelism approach applied for the algorithm are taken as criteria
for evaluating their usability.

The functionality related part of the decision is done based on the data for-
mats which have been defined for the modules input and output interfaces. At
first the output format of a module has to match the input format of the sub-
sequent one. Additionally the input format of the first module and the output
format of the last have to be selected according to the specification in the visu-
alization request.

After a set of software modules has been identified for each stage of the
visualization pipeline, which satisfies the functionality related constraints, the
visualization planning process enters the next stage.

5. Resource Information Gathering

Getting information about the available grid nodes is crucial for the VP.
The main source of resource-related information within a Globus-based grid
environment is the metadirectory service (MDS) [5,7]. It delivers information
on the static and dynamic aspects of resource availability on the grid.

To enable the selection of appropriate hosts access to aggregate informa-
tion about all accessible grid hosts is required. This is realized by accessing
a Grid Index Information Services (GIIS) server, which represents the aggre-
gate information source. The GVK VP retrieves the available grid hosts as

GVK Scheduling and Resource Brokering 33

well as information on processing power, available memory and file system
usage from the MDS system. For processors the number and speeds are re-
trieved, considering memory the total and free amount can be checked, and for
filesystems the free space and the location is reported. Other informations like
network and CPU loads are measured directly using GVK functionality, which
enables fast reaction if the network or system load changes significantly. The
GVK CPU load sensor has been realized by calling the unix top command and
is incorporated into the GVK resource information module which also delivers
the relevant parts of the MDS output to the VP. Information about the available
network bandwidth is collected by sending test data over the network connec-
tions in question. If a specific connection has already been identified as a re-
quired datapath payload data can already be transmitted during the bandwidth
measurements. The network monitoring then serves as a tool for selecting the
appropriate transmission mode such as compressed data transmission [12].

Within this stage of the visualization planning process all available grid
hosts are evaluated taking into account their static and dynamic properties.

6. Algorithm Selection and Resource Mapping
During these stages of the visualization planning process the previously se-

lected software modules have to be mapped onto the available resources. The
output of stage one identifies a series of required data transformations repre-
senting the pipeline. For each data transformation a list of available modules
is provided, which offer the appropriate input and output interface. Based on
the resource information gathered in step two, the appropriate implementation
together with the fitting resource has to be found. The main problem of this
selection process is given by the mutual influence of resource and algorithm
selection.

In general, one can distinguish sequential algorithms (SQA), shared mem-
ory parallel algorithms (SMA), and distributed memory parallel algorithms
(DMA). The other criterion identified is the type of hardware. The VP makes a
distinction between a single processor system (SPS), a shared memory system
(SMS), and a distributed memory system (DMS).

For selecting an appropriate combination of algorithm and hardware the
possible combinations are evaluated considering their performance. The fol-
lowing table illustrates the performance gains or losses to be expected if the
according hardware-algorithm combination is used. For this comparison it was
assumed that each processor offers the same amount of computational power.
A plus sign denotes a performance gain, a minus a loss. The appearance of
a double plus or minus indicates a significant gain or loss. For a plus minus
combination no major performance impact compared to the single processor
and sequential algorithm pair is expected.

34 DISTRIBUTED AND PARALLEL SYSTEMS

The main criteria for the algorithm and resource selection process in addition
to the type of hardware and the programming paradigm used are given by the
available number and speed of processors, size of memory, and the bandwidth
between the involved hosts.

Considering the size of the input data (IS), network bandwidth (BW), num-
ber of processors used (NP), available processor performance (PP), algo-
rithm scalability (AS), problem size (PS), available memory size (MS), and
the mapping factor (MF), which expresses the quality of the mapping between
algorithm type and resource as shown in the table above, the processing time
for one step of the pipeline PT can be calculated as follows:

The processing time is the sum of the data transmission time from the previous
stage of the pipeline to the stage in question and the processing time on the
grid node. These criteria not only include static properties but also highly
dynamic ones like network or system load. For the mapping process the status
of the dynamic aspects is retrieved during the resource information gathering
phase. The algorithm properties relevant for the decision process are provided
together with the according software modules and can looked up in the list of
available software modules.

Equation 1 only delivers a very rough estimation of the performance of a
resource-algorithm combination. Therefore the result can only be interpreted
as a relative quality measure and the processing time estimations PT for all
possible resource-algorithm combinations have to be compared. Finally the
combination yielding the lowest numerical result is selected.

During the selection process the resource mapping for the pipeline stages is
done following the expected dataflow direction. But this approach contains a
possible drawback: As the network connection bandwidth between two hosts is
considered important, a current resource mapping decision can also influence
the resource mapping of the stage before if the connecting network is too slow
for the expected data amount to be transmitted. For coping with this problem
all possible pipeline configurations have to be evaluated.

7. Visualization Pipeline Construction

Using the execution schedule provided by the VP Globus GRAM is invoked
to start the required visualization modules on the appropriate grid nodes. To

GVK Scheduling and Resource Brokering 35

provide the correct input for the GRAM service, the VP generates the RSL
specifications for the Globus jobs which have to be submitted.

An important issue to be taken into account is the order of module startup.
Considering two neighboring modules within the pipeline one acts as a server,
while the other is the client connecting to the server. Therefore its important
that the server side module is started before the client side. To ensure this,
each module registers itself at a central module, which enables the VP module
to check if the server module is already online, before the client is started.

The data exchange between the involved modules is accomplished over
Globus IO based connections which can be used in different modes which
are further illustrated in [12]. The content of the data transmitted between
to modules depends on the communication protocol defined by the modules
interfaces.

8. Conclusions and Future Work

Within this paper we have presented an overview of the scheduling and re-
source selection aspect of the Grid Visualization Kernel. Its purpose is the
decomposition of the specified visualization into separate modules, which are
arranged into a visualization pipeline and started on appropriate grid nodes,
which are selected based on the static and dynamic resource informations re-
trieved using Globus MDS or measured on the fly.

Future work will mainly focus on further refinements of the algorithm selec-
tion and resource mapping strategy, which can be improved in many ways for
example taking into account resource sets containing processors with different
speeds. Additional plans include improvements of the network load monitor-
ing, such as inclusion of the Network Weather Service [15].

References

[1]

[2]

[3]

[4]

F. D. Berman, R. Wolski, S. Figueira, J. Schopf, and G. Shao. Application-Level Schedul-
ing on Distributed Heterogeneous Networks, Proceedings Conference on Supercomputing,
Pittsburgh, PA, USA, 1996

J. Bester, I. Foster, C. Kesselman, J. Tedesco, and S. Tuecke. GASS: A Data Movement
and Access Service for Wide Area Computing Systems, Proceedings of the Sixth Workshop
on Input/Output in Parallel and Distributed Systems, Atlanta, GA, USA, pp. 78–88, May
1999

R. Buyya, J. Giddy, and D. Abramson. An Evaluation of Economy-based Resource Trading
and Scheduling on Computational Power Grids for Parameter Sweep Applications, Pro-
ceedings Second Workshop on Active Middleware Services, Pittsburgh, PA, USA, 2000

K. Czajkowski, I. Foster, N. Karonis, C. Kesselman, S. Martin, W. Smith, and S. Tuecke. A
Resource Management Architecture for Metacomputing Systems, Proceedings IPPS/SPDP
’98 Workshop on Job Scheduling Strategies for Parallel Processing, pp. 62–82, 1998

36 DISTRIBUTED AND PARALLEL SYSTEMS

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

K. Czajkowski, S. Fitzgerald, I. Foster and C. Kesselman. Grid Information Services for
Distributed Resource Sharing, Proceedings of the 10th IEEE International Symposium on
High-Performance Distributed Computing, pp. 181–194, August 2001

H. Dail, H. Casanova, and F. Berman. A Decoupled Scheduling Approach for the GrADS
Program Development Environment, Proceedings Conference on Supercomputing, Balti-
more, MD, USA, November 2002

S. Fitzgerald, I. Foster, C. Kesselman, G. von Laszewski, W. Smith, and S. Tuecke. A Di-
rectory Service for Configuring High-performance Distributed Computations, Proceedings
6th IEEE Symposium on High Performance Distributed Computing, pp. 365–375, August
1997

I. Foster and C. Kesselman. Globus: A Metacomputing Infrastructure Toolkit, International
Journal of Supercomputing Applications, Vol. 11, No. 2, pp. 4–18, 1997

I. Foster, C. Kesselman, and S. Tuecke. The Anatomy of the Grid: Enabling Scalable Vir-
tual Organizations, International Journal of Supercomputer Applications, Vol. 15, No. 3,
2001

J. Frey, T. Tannenbaum, I. Foster, M. Livny, and S. Tuecke. Condor-G: A Computation
Management Agent for Multi-Institutional Grids, Proceedings of the 10th IEEE Sympo-
sium on High Performance Distributed Computing, San Francisco, CA, USA, pp. 55–66,
August 2001

The Globus Alliance. The Globus Resource Specification Language RSL v1.0,
http://www.globus.org/gram/rsl_spec1.html, 2000

P. Heinzlreiter, D. Kranzlmüller, and J. Volkert. Network Transportation within a Grid-
based Visualization Architecture, Proceedings PDPTA 2003, Las Vegas, NV, USA, pp.
1795-1801, June 2003

P. Heinzlreiter and D. Kranzlmüller. Visualization Services on the Grid- The Grid Visual-
ization Kernel, Parallel Processing Letters, Vol. 13, No. 2, pp. 125–148, June 2003

E. Heymann, A. Fernandez, M. A. Senar, and J. Salt. The EU-CrossGrid Approach for
Grid Application Scheduling, Proceedings of the 1st European Across Grids Conference,
Santiago de Compostela, Spain, pp. 17–24, February 2003

R. Wolski, N. Spring, and J. Hayes. The Network Weather Service: A Distributed Resource
Performance Forecasting Service for Metacomputing, Future Generation Computing Sys-
tems, Vol. 15, No. 5-6, pp. 757–768, October 1999

II

CLUSTER TECHNOLOGY

This page intentionally left blank

MESSAGE PASSING VS. VIRTUAL SHARED
MEMORY A PERFORMANCE COMPARISON

Wilfried N. Gansterer and Joachim Zottl
Department of Computer Science and Business Informatics
University of Vienna
Lenaugasse 2/8, A-1080 Vienna, Austria

{wilfried.gansterer, joachim.zottl}@univie.ac.at

This paper presents a performance comparison between important programming
paradigms for distributed computing: the classical Message Passing model and
the Virtual Shared Memory model. As benchmarks, three algorithms have been
implemented using MPI, UPC and CORSO: (i) a classical summation formula
for approximating (ii) a tree-structured sequence of matrix multiplications,
and (iii) the basic structure of the eigenvector computation in a recently devel-
oped eigensolver. In many cases, especially for inhomogeneous or dynamically
changing computational grids, the Virtual Shared Memory implementations lead
to performance comparable to MPI implementations.

Several paradigms have been developed for distributed and parallel comput-
ing, and different programming environments for these paradigms are avail-
able. The main emphasis of this article is a performance evaluation and com-
parison of representatives of two important programming paradigms, the mes-
sage passing (MP) model and the virtual shared memory (VSM) model.

This performance evaluation is based on three benchmarks which are mo-
tivated by computationally intensive applications from the Sciences and En-
gineering. The structure of the benchmarks is chosen to support investigation
of advantages and disadvantages of the VSM model in comparison to the MP
model and evaluation of the applicability of the VSM model to high perfor-
mance and scientific computing applications.

The Message Passing Model was one of the first concepts developed for sup-
porting communication and transmission of data between processes and/or pro-

Abstract

Keywords: message passing, virtual shared memory, shared object based, grid computing,
benchmarks

1. Introduction

cessors in a distributed computing environment. Each process can access only
its private memory, and explicit send/receive commands are used to transmit
messages between processes. Important implementations of this concept are
PVM (parallel virtual machine, [Geist et al., 1994]) and MPI (message passing
interface, www-unix.mcs.anl.gov/mpi). MPI comprises a library of rou-
tines for explicit message passing and has been designed for high performance
computing. It is the classical choice when the main focus is on achieving high
performance, especially for massively parallel computing. However, develop-
ing efficient MPI codes requires high implementation effort, and the costs for
debugging, adapting and maintaining them can be relatively high.

The Virtual Shared Memory Model (also known as distributed shared mem-
ory model, partitioned global address space model, or space based model)
is a higher-level abstraction which hides explicit message passing commands
from the programmer. Independent processes have access to data items shared
across distributed resources and this shared data is used for synchronization
and for communication between processes. The advantages over the MP model
are obvious: easier implementation and debugging due to high-level abstrac-
tion and the reduction of the amount of source code, more flexible and mod-
ular code structure, decoupling of processes and data (which supports asyn-
chronous communication), and higher portability of the code. However, the
VSM model is usually not associated with classical high performance comput-
ing applications, because the comfort and flexibility of a high-level abstraction
tends to incur a price in terms of performance.

In this paper, two implementations of the VSM model are considered in or-
der to investigate this performance drawbacks: UPC (Unified Parallel C, upc.
gwu.edu), an extension of the ANSI C standard, and CORSO (Co-ORrdinated
Shared Objects, www.tecco.at), an implementation of the shared object based
model.

The Shared Object Based (SOB) Model is a subtype of the VSM model. In
this concept, objects are stored in a space (virtual shared memory).

A central idea of the space based concept is to have a very small set of com-
mands for managing the objects in the space. This concept has been first for-
mulated in the form of the LINDA tuple space ([Gelernter and Carriero, 1992]),
which can be considered the origin of all space based approaches. Modern rep-
resentatives of the object/space based concept are the freely available JAVAS-
PACES ([Bishop and Warren, 2003]), the GIGASPACES ([GigaSpaces, 2002]),
the TSPACES ([Lehman et al., 1999]), and CORSO.

Related Work. Several performance studies comparing different distributed
programming paradigms have been described in the literature. Most of them
compare UPC and MPI, for example, [El-Ghazawi and Cantonnet, 2002] and
are based on different benchmarks than the ones we consider. They use So-

40 DISTRIBUTED AND PARALLEL SYSTEMS

bel Edge Detection, the UPC Stream Benchmarks (see also [Cantonnet et al.,
2003]), an extension of the STREAM Benchmark ([McCalpin, 1995]), and
the NAS parallel benchmarks (NPB, www.nas.nasa.gov/Software/NPB).
They show that UPC codes, although in general slower and less scalable, can
in some cases achieve performance values comparable to those of MPI codes.

For performance evaluations of UPC, the benchmark suite UPC_Bench has
been developed ([El-Ghazawi and Chauvin, 2001]), which comprises synthetic
benchmarks (testing memory accesses) and three application benchmarks (So-
bel edge detection, N Queens problem, and matrix multiplication).

[Husbands et al., 2003], compare the Berkeley UPC compiler with the com-
mercial HP UPC compiler based on several synthetic benchmarks and a few
application benchmarks from [El-Ghazawi and Cantonnet, 2002]. They show
that the Berkeley compiler overall achieves comparable performance.

Synopsis. In Section 2, we summarize the most important properties of the
VSM and SOB models and of their representatives, UPC and CORSO. In Sec-
tion 3, we discuss our choice of benchmarks. In Section 4, we describe our
testbed environment and summarize our experimental results. Section 5 con-
tains conclusions and outlines directions for future work.

Message Passing vs. Virtual Shared Memory, a Performance Comparison 41

2. The Virtual Shared Memory Paradigm

In this section, we give a brief introduction into UPC and CORSO, the two
representatives of the VSM model investigated in this paper.

UPC ([El-Ghazawi et al., 2003]) is a parallel extension of the ANSI C stan-
dard for distributed shared memory computers. It supports high performance
scientific applications. In the UPC programming model, one or more threads
are working independently, and the number of threads is fixed either at compile
time or at run-time. Memory in UPC is divided into two spaces: (i) a private
memory space and (ii) a shared memory space. Every thread has a private
memory that can only be accessed by the owning thread. The shared memory
is logically partitioned and can be accessed by every thread.

UPC comprises three methods for synchronization: The notify and the wait
statement, the barrier command, which is a combination of notify and wait,
and the lock and unlock commands.

CORSO is a representative of the SOB model. It is a platform independent
middleware, originally developed at Vienna University of Technology, now a
commercial product, produced by tecco. CORSO supports programming in C,
C++, Java, and .NET. In a CORSO run-time environment, each host contains a
Coordination Kernel, called CoKe. It communicates with other CoKe’s within
the network by unicast. If a device does not have enough storage capacity, for
example, a mobile device like a PDA, then it can link directly to a known CoKe
of another host.

Some important features of CORSO are: (i) Processes can be dynamically
added to or removed from a distributed job during execution. Such dynam-
ics cannot be implemented either in MPI or in UPC. In MPI, the number of
processes is fixed during the run-time, and in UPC it is either a compile-time
constant or specified at run-time ([Husbands et al., 2003]). Thus, this feature
makes CORSO an attractive platform for dynamically changing grid computing
environments. (ii) CORSO distinguishes two types of communication objects:
Const objects can only be written once, whereas var objects can be written
an arbitrary number of times. (iii) For caching, CORSO provides the eager
mode, where each object replication is updated immediately when the original
object was changed, and the lazy mode, where each object replication is only
updated when it is accessed. (iv) CORSO comprises two transaction models,
hard-commit (in case of failure, the transaction aborts automatically without
feedback) and soft-commit (the user is informed if a failure occurs).

is a popular “toy problem” in distributed computing. Because of the simple
dependency structure (only two synchronization points) it is easy to parallelize
and allows one to evaluate the overhead related with managing shared objects
in comparison to explicit message passing.

Implementation. In the parallel implementation for processors, the problem
size is divided into parts, and each processor computes its partial sum.
Finally, all the partial sums are accumulated on one processor.

42 DISTRIBUTED AND PARALLEL SYSTEMS

3. Benchmarks
The benchmarks used for comparing the three programming paradigms were

designed such that they are (i) representative for computationally intensive ap-
plications from the Sciences and Engineering, (ii) increasingly difficult to par-
allelize, (iii) scalable in terms of workload, and (iv) highly flexible in terms of
the ratio of computation to communication. The following three benchmarks
were implemented in MPI, UPC and CORSO: (i) two classical summation for-
mulas for approximating (ii) a tree structured sequence of matrix multiplica-
tions, and (iii) the basic structure of the eigenvector accumulation in a recently
developed block tridiagonal divide-and-conquer eigensolver ([Gansterer et al.,
2003]).

Benchmark 1: Approximation

Computing approximations for based on finite versions of one of the for-
mulas

The second benchmark is a sequence of matrix multiplications, structured
in the form of a binary tree. Given a problem size each processor involved
generates two random matrices and multiplies them. Then, for each pair
of active neighboring processors in the tree, one of them sends its result to the
neighbor and then becomes idle. The recipient multiplies the matrix received
with the one computed in the previous stage, and so on. At each stage of this
benchmark, about half of the processors become idle, and at the end, the last
active processor computes a final matrix multiplication.

Due to the tree structure, this benchmark involves much more communica-
tion than Benchmark 1 and is harder to parallelize. The order of the matrices,
which is the same at all levels, determines the workload and, in combination
with the number of processors, the ratio of communication to computation.
For the binary tree is balanced, which leads to better utilization
of the processors involved than for an unbalanced tree.

Implementation. Benchmark 2 has been implemented in MPI based on a
Master-Worker model. In this model, one processor takes the role as a master
which organizes and distributes the work over the other processors (the work-
ers). The master does not contribute to the actual computing work, which is a
drawback of the MPI implementation in comparison to the UPC and CORSO

implementations, where all processors actively contribute computational re-
sources.

In UPC and CORSO, each processor has information about its local task and
about the active neighbors in the binary tree. In the current implementation, the
right processor in every processor pair becomes inactive after it has transferred
its result to the left neighbor.

Message Passing vs. Virtual Shared Memory, a Performance Comparison 43

Benchmark 2: Tree Structured Matrix Multiplications

Benchmark 3: Eigenvector Accumulation

Benchmark 3 is the basic structure of the eigenvector accumulation in a
recently developed divide and conquer eigensolver ([Gansterer et al., 2003]). It
also has the structure of a binary tree with matrix multiplications at each node.
However, in contrast to Benchmark 2, the sizes of the node problems increase
at each stage, which leads to a much lower computation per communication
ratio. This makes it the hardest problem to parallelize.

Implementation. The implementation of Benchmark 3 is analogous to the
implementation of Benchmark 2.

4. Experimental Results

This section summarizes our performance results for the three benchmarks
described in Section 3 implemented in MPI, UPC, and CORSO. Two com-

44 DISTRIBUTED AND PARALLEL SYSTEMS

puting environments were available: (i) A homogeneous environment, the
Schrödinger II cluster at the University of Vienna, comprising 192 comput-
ing nodes. Each node consists of an Intel Pentium 4 (2.53 GHz) with 1 GB
RAM. The nodes are connected by 100 MBit Ethernet. (ii) A heterogeneous
environment, the PC cluster in our student laboratory, which consists of ten
Intel Pentium 4 nodes connected by 100 MBit Ethernet. The first five nodes
have a clock speed of 2.3 GHz with 1 GB RAM each, and the other five nodes
have a clock speed of 1.7 GHz with 380 MB RAM each.

In terms of software, we used MPICH 1.2.5, the Berkeley UPC compiler
1.1.0, and CORSO version 3.2.

Approximation. Figure 1 shows the speedup values achieved with Bench-
mark 1. Due to the high degree of parallelism available, the speedup values of

all three implementations are relatively high. The values on the Schrödinger
cluster illustrate the drawbacks of the VSM implementations (overhead asso-
ciated with virtual shared memory and shared objects, respectivly) in terms of
scalability. The “‘stair’” on the PC cluster occurs when the first one of the
slower nodes is used.

Tree Structured Matrix Multiplications. Figure 2 shows the speedup val-
ues for Benchmark 2, based on normalizing the execution times to the same
total workload. For a balanced binary tree the utilization of active

Figure 2. Speedup values of Benchmark 2 at the Schrödinger and the PC cluster

Figure 1. Speedup values of Benchmark 1 at the Schrödinger and the PC cluster

Message Passing vs. Virtual Shared Memory, a Performance Comparison 45

processors is maximal, and therefore the speedup curve shows an oscillating
pattern. Due to the master-worker implementation, the speedup value and the
execution time for one processor and for two processors are equal.

Eigenvector Accumulation. Table 1 summarizes the execution times for
Benchmark 3, and Figure 3 shows the corresponding speedup values. As ex-
plained in the previous section, the best results occur for processors.
In absolute terms, the speedup values are disappointingly low for all three im-
plementations (in some cases, even a “‘slowdown’” occurs). This reflects the
difficulty of parallelizing Benchmark 3—in particular, its low computation per
communication ratio.

Figure 3. Speedup values of Benchmark 3 at the Schrödinger and the PC cluster

We have described performance comparisons between the classical mes-
sage passing paradigm and the virtual shared memory paradigm, represented
by MPI and UPC/CORSO, respectively. As expected, the implementations in
the VSM model achieve somewhat lower performance than explicit message
passing codes. However, performance loss in the benchmarks we considered
is not severe, and in many practical situations it may be outweighed by the
greatly reduced coding and debugging effort for UPC and CORSO.

5. Conclusion and Future Work

One of our motivations for the performance studies described here is the cur-
rently ongoing development of a grid-enabled parallel eigensolver. Therefore,
we are refining and improving Benchmark 3, which will be used as building
block in this context. For computational grids, we will particularly focus on
the design and integration of dynamic load balancing strategies into the bench-
marks. The representatives of the VSM model, especially the SOB paradigm,
provide excellent infrastructure for this task, and seem to have important ad-
vantages over the message passing paradigm. Finally, we will also investigate
the combination of task and data parallelism in Benchmark 3, which will sig-
nificantly improve the parallel performance achieved with this benchmark.

46 DISTRIBUTED AND PARALLEL SYSTEMS

References
[Bishop and Warren, 2003] Bishop, Philip and Warren, Nigel (2003). JavaSpaces in Practice.

Addison-Wesley.

[Cantonnet et al., 2003] Cantonnet, François, Yao, Yiyi, Annareddy, Smita, Mohamed,
Ahmed S., and El-Ghazawi, Tarek A. (2003). Performance monitoring and evaluation of
a UPC implementation on a numa architecture. In International Parallel and Distributed
Processing Symposium, IEEE Press.

[El-Ghazawi and Cantonnet, 2002] El-Ghazawi, Tarek A. and Cantonnet, François (2002).
UPC performance and potential: A NPB experimental study. In Proceedings of the 15th
Conference on Supercomputing (SC2002). IEEE Press.

[El-Ghazawi et al., 2003] El-Ghazawi, Tarek A., Carlson, William W., and Draper, Jesse M.
(2003). UPC Specification V1.1.1.

[El-Ghazawi and Chauvin, 2001] El-Ghazawi, Tarek A. and Chauvin, Sébastien (2001). UPC
benchmarking issues. In Proceedings of the 2001 International Conference on Parallel
Processing. IEEE Press.

[Gansterer et al., 2003] Gansterer, Wilfried N., Ward, Robert C., Muller, Richard P., and God-
dard, III, William A. (2003). Computing approximate eigenpairs of symmetric block tridi-
agonal matrices. 25:65–85.

[Geist et al., 1994] Geist, A., Beguelin, A., Dongarra, J. J., Jiang, W., Manchek, R., and Sun-
deram, V. (1994). PVM: Parallel Virtual Machine—A Users’ Guide and Tutorial for Net-
worked Parallel Computing. MIT Press, Cambridge, MA.

[Gelernter and Carriero, 1992] Gelernter, David and Carriero, Nicholas (1992). Coordination
languages and their significance. Communications of the ACM, 35(2):97–107.

[GigaSpaces, 2002] GigaSpaces (2002). GigaSpaces Platform – White Paper. Technical report,
GigaSpaces Technologies, Ltd., 532 La Guardia PL 567, New York, NY 10012, USA.

[Husbands et al., 2003] Husbands, Parry, Iancu, Costin, and Yelick, Katherine (2003). A per-
formance analysis of the Berkeley UPC compiler. In Proceedings of the 17th International
Conference on Supercomputing, pages 63–73. ACM Press.

[Lehman et al., 1999] Lehman, T. J., McLaughry, S. W., and Wycko, P. (1999). T Spaces: The
Next Wave. In 32 Annual Hawaii International Conference on System Sciences, volume 8,
page 8037. IEEE Press.

[McCalpin, 1995] McCalpin, John D. (1995). Sustainable memory bandwidth in current high
performance computers. Technical report, Silicon Graphics, Inc.

MPI-I/O WITH A SHARED FILE POINTER USING
A PARALLEL VIRTUAL FILE SYSTEM IN
REMOTE I/O OPERATIONS

Yuichi Tsujita
Department of Electronic Engineering and Computer Science,
Faculty of Engineering, Kinki University
1 Umenobe, Takaya, Higashi-Hiroshima, Hiroshima 739-2116, Japan

tsujita@hiro.kindai.ac.jp

MPI [1, 2] is the de facto standard in parallel computation, and almost all
computer vendors have provided their own MPI libraries. But such libraries
do not support MPI communications among different kinds of computers. To
realize such mechanism, Stampi [3] has been developed.

Recently, data-intensive scientific applications require a parallel I/O sys-
tem, and a parallel I/O interface named MPI-I/O was proposed in the MPI-2
standard [2]. Although it has been implemented in several kinds of MPI li-
braries, MPI-I/O operations to a remote computer which has a different MPI
library (remote MPI-I/O) have not been supported. Stampi-I/O [4] has been
developed as a part of the Stampi library to realize this mechanism. Users can
execute remote MPI-I/O operations using a vendor-supplied MPI-I/O library
with the help of its MPI-I/O process which is dynamically invoked on a remote
computer. When the vendor-supplied one is not available, UNIX I/O functions
are used instead of the library (pseudo MPI-I/O method).

Abstract A flexible intermediate library named Stampi realizes seamless MPI operations
on a heterogeneous computing environment. With this library, dynamic process
creation and MPI-I/O in both local and remote I/O operations are available. To
realize distributed I/O operations with high performance, a Parallel Virtual File
System (PVFS) has been implemented in the MPI-I/O mechanism of Stampi.
MPI-I/O functions with a shared file pointer have been evaluated and sufficient
performance has been achieved.

Keywords: MPI-I/O, Stampi, shared file pointer, MPI-I/O process, PVFS

1. Introduction

48 DISTRIBUTED AND PARALLEL SYSTEMS

Figure 1. Architecture of an MPI-I/O mechanism in Stampi.

Recently, PVFS [5] has been developed and available on a Linux PC cluster.
It realizes distributed data management and gives users a virtual single file sys-
tem. Although one of the non-commercial MPI-I/O implementations named
ROMIO [6] supports the PVFS system as an underlying I/O device, it does not
support remote MPI-I/O operations. To realize effective distributed data man-
agement in remote MPI-I/O operations by Stampi, the UNIX I/O functions in
the pseudo MPI-I/O method have been replaced with native PVFS I/O func-
tions. Primitive MPI-I/O functions using a shared file pointer were evaluated
on interconnected PC clusters.

In the following sections, outline, architecture, and preliminary performance
results of the MPI-I/O mechanism are described.

2. Implementation of PVFS in Stampi

Architectural view of the MPI-I/O mechanism in Stampi is depicted in Fig-
ure 1. In the interface layer to user processes, intermediate interfaces which
have MPI APIs (a Stampi library) were implemented to relay messages be-
tween user processes and underlying communication and I/O systems. Users
can execute MPI communication functions including MPI-I/O functions among
computers without awareness of differences in underlying communication and
I/O systems. To realize distributed I/O on a PVFS file system with high perfor-
mance, PVFS I/O functions have been introduced in the MPI-I/O mechanism.

As an example, mechanisms of split collective read operations with begin
and end statements using a shared file pointer are illustrated in Figures 2 (a)
and (b), respectively. When user processes call the function with a begin
statement, several parameters including an I/O request are packed in a user
buffer using MPI_Pack(). Then it is transfered to an MPI-I/O process using
MPI_Send() and MPI_Recv() of the Stampi library. Inside them, Stampi-
supplied underlying communication functions such as JMPI_Isend()are used

MPI-I/O with a Shared File Pointer Using a Parallel Virtual File System 49

Figure 2. Mechanisms of (a) MPI_File_read_ordered_begin() and (b)
MPI_File_read_ordered_end() using PVFS I/O functions in remote MPI-I/O opera-
tions. MPI functions in solid line rectangles are MPI interfaces of Stampi. Internally,
Stampi-supplied functions such as JMPI_Isend() are called by them, A vendor-supplied MPI
function, MPI_Barrier(), in a dotted line rectangle is called among user processes.

for non-blocking TCP socket communications. After the message transfer, the
I/O request and other parameters are unpacked by MPI_Unpack(). Then an I/O
status table, which is used to manage non-blocking I/O operations, is created
on the MPI-I/O process and the I/O request and related parameters including
a shared file pointer are stored in it. In addition, a ticket number, which is
issued to identify each I/O request on the MPI-I/O process, is also stored. After
this operation, those parameters are sent to the user processes. Then, the user
processes create own I/O status table and store the ticket number and the I/O
related information in it. Besides, synchronization among the user processes
is done by MPI_Barrier() in parallel with the I/O operation by the MPI-
I/O process using PVFS I/O functions. On the MPI-I/O process, the stored
information values such as the shared file pointer are updated in order of a
rank-ID after the I/O operation.

To detect completion of the I/O operation, the split collective read function
with an end statement is used. Once it is called, firstly synchronization by
MPI_Barrier() is carried out among the user processes. Secondly, stored
information values in the I/O status table of the user processes are retrieved,
and the I/O request, the ticket number, and the related parameters are sent to
the MPI-I/O process. The MPI-I/O process finds an I/O status table which has
the same ticket number and retrieves the corresponding parameters. Finally,
several parameters and read data are sent to the user processes, and both I/O
status tables are deleted and the I/O operation finishes.

50 DISTRIBUTED AND PARALLEL SYSTEMS

3. Performance measurement
Performance of the MPI-I/O functions using a shared file pointer was mea-

sured on interconnected PC clusters using an SCore cluster system [7]. Spec-
ifications of the clusters are summarized in Table 1. A PC cluster I consisted
one server node and three computation nodes. As the server node also acted
as a computation node, total number of computation nodes was four. While
a PC cluster II had one server node and four computation nodes. Network
connections among PC nodes of the clusters I and II were established on 1
Gbps bandwidth network with full duplex mode via Gigabit Ethernet switches,
NETGEAR GS108 and 3Com SuperStack 4900, respectively. Interconnec-
tion between those switches was made with 1 Gbps bandwidth network with
full duplex mode. In the cluster II, PVFS (version 1.5.8) was available on the
server node. All the four computation nodes were used as I/O nodes for the
PVFS file system. Size of dedicated disk of each I/O node was 45 GByte,
and thus the PVFS file system with 180 GByte (4 × 45 GByte) was available.
During this test, default stripe size (64 KByte) of the PVFS was selected.

In performance measurement of round-trip communication, transfer rate
was calculated as (message data size)/(RTT/2), where RTT was a round trip
time for ping-pong communication between both clusters. In the remote MPI-
I/O operations, message data was split evenly among the user processes, and
they were transfered among user processes and an MPI-I/O process on a re-
mote computer. Message data size was denoted as the whole message data size
to be transfered among them. A router process was not used in this test because
each computation node was able to communicate outside directly.

MPI-I/O with a Shared File Pointer Using a Parallel Virtual File System 51

Figure 3. Transfer rate values of inter-machine data transfer using raw TCP sockets between
a computation node of a PC cluster I and a server node of a PC cluster II.

Inter-machine data transfer

Performance of inter-machine data transfer using raw TCP sockets between
a computation node of the cluster I and a server node of the cluster II was mea-
sured because inter-machine data transfer in the remote MPI-I/O operations
was carried out via the same communication path. In this test, TCP_NODELAY
option was activated with the help of setsockopt(). Performance results are
shown in Figure 3. Raw TCP socket connections achieved up to 78.7 MB/s for
8 MByte message data, thus up to 63 % (~ 78.7/125 × 100) of the theoretical
bandwidth has been achieved. While raw TCP socket connections among PC
nodes inside a PC cluster I and II via direct connection using a twisted-pair
cross cable achieved up to about 80 MB/s and 112 MB/s, respectively. Thus
this low performance was due to poor performance of an on-board Ethernet
interface of a PC node in the cluster I.

Local I/O operations

To evaluate PVFS I/O functions, performance of local I/O operations on the
PVFS file system was measured using native PVFS and UNIX I/O functions.
In the PVFS I/O case, pvfs_write() and pvfs_read() were used for write
and read operations, respectively. While write() and read() were used in
the UNIX I/O case for write and read operations, respectively. Transfer rates
in the both cases are shown in Figure 4. In the write operations, up to 111.6
MB/s for 16 MByte message data and 72.8 MB/s for 1 Mbyte message data
were achieved in the PVFS and UNIX I/O cases, respectively. Thus up to
89 % (~ 111.6/125 × 100) and 58 % (~ 72.8/125 × 100) of the theoreti-
cal throughput were achieved in the PVFS and UNIX I/O cases, respectively.
While 111.3 MB/s for 64 MByte and 77.9 MB/s for 16 MByte were achieved

52 DISTRIBUTED AND PARALLEL SYSTEMS

Figure 4. Transfer rate values of local I/O operations on a PVFS file system of a PC cluster II,
where UNIX and PVFS denote I/O operations using native UNIX and PVFS I/O functions, re-
spectively. Besides, write and read in parentheses mean write and read operations, respectively.

in the read operations with the PVFS and UNIX I/O functions, respectively.
Therefore up to 89 % (~ 111.3/125 × 100) and 62 % (~ 77.9/125 × 100)
of the theoretical throughput were achieved in the PVFS and UNIX I/O cases,
respectively. In the both I/O operations, the PVFS I/O case has performance
advantage compared with the UNIX I/O case. In the UNIX I/O case, an I/O re-
quest is passed through to the block I/O layer of the Linux kernel on the server
node, and then through to PVFS routines. While an I/O request bypasses the
first path in the PVFS I/O case. The bottleneck in the former case is considered
to be inefficiencies in the implementation of the block I/O layer.

Remote MPI-I/O operations

In performance measurement of remote MPI-I/O operations using PVFS I/O
functions from the cluster I to the cluster II, performance of blocking and split
collective MPI-I/O functions with a shared file pointer was measured. In this
test,TCP_NODELAY option was activated by the Stampi start-up command to
optimize inter-machine data transfer.

Execution times of write and read operations using the blocking and split
collective MPI-I/O functions are shown in Figures 5 (a) and (b), respectively.
Performance values of the blocking functions are almost the same with respect
to the number of user processes in both I/O operations because the transfer
of I/O requests which followed the former I/O request was blocked until the
MPI-I/O process finished an I/O operation by the I/O request. In the read and
write I/O operations, transfer rate values with more than 8 MByte data are
about 48 MB/s and 38 MB/s, respectively. While estimated transfer rate is
roughly calculated as 46 MB/s from the measured values in the inter-machine

MPI-I/O with a Shared File Pointer Using a Parallel Virtual File System 53

Figure 5. Execution times of remote (a) read and (b) write MPI-I/O operations using block-
ing and split collective MPI-I/O functions from a PC cluster I to a PVFS file system of a
PC cluster II. c-read and sc-read in (a) denote I/O operations by MPI_File_read_ordered()
and MPI_File_read_ordered_begin(), respectively, while c-write and sc-write in (b) denote
I/O operations by MPI_File_write_ordered() and MPI_File_write_ordered_begin(), re-
spectively. np in the parentheses denotes the number of user processes.

data transfer and the local I/O operations. Both values indicate that the inter-
machine data transfer is bottleneck due to the architectural constraints of the
blocking I/O function.

In the read operations, the execution times for the split collective function
are about 22 % and 33 % of those for the blocking function with more than
512 KByte message data in two and four user processes cases, respectively.
While the execution times for the split collective one in the write operations
are about 74 % and 84 % of those for the blocking one with more than 512
KByte message data in two and four user processes cases, respectively.

In the split collective case, the first I/O request was carried out by the MPI-
I/O process without blocking the user processes, but the following I/O requests
were blocked until the former I/O operation finished. Besides, bulk data was
also transfered in the write function, and a required time for the transfer was
dominant in the execution time for the function. As a result, minimizing effect
in the execution times is quite small compared with those in the read opera-
tions.

In both blocking and split collective cases, it was confirmed that message
data was written or read according to a rank-ID of each user process correctly.

4. Summary

By introducing the PVFS system in the MPI-I/O mechanism of Stampi,
huge size of a parallel file system on a PC cluster is accessible from MPI pro-
cesses on other computers using collective MPI-I/O functions with a shared
file pointer. In the remote MPI-I/O operations, user processes on a PC cluster

54 DISTRIBUTED AND PARALLEL SYSTEMS

invoked an MPI-I/O process dynamically on the another PC cluster where the
PVFS file system was available, and it played I/O operations using PVFS I/O
functions on the file system. With the help of the PVFS system, distributed data
management has been realized in the MPI-I/O mechanism. Execution times of
split collective MPI-I/O functions using a shared file pointer were shorter than
those of blocking collective ones, typically in read operations.

Acknowledgments

The author would like to thank Genki Yagawa, director of Center for Promo-
tion of Computational Science and Engineering (CCSE), Japan Atomic Energy
Research Institute (JAERI), for his continuous encouragement. The author
would like to thank the staff at CCSE, JAERI, especially Toshio Hirayama,
Norihiro Nakajima, Kenji Higuchi, and Nobuhiro Yamagishi for providing a
Stampi library and giving useful information.

This research was partially supported by the Ministry of Education, Culture,
Sports, Science and Technology (MEXT), Grant-in-Aid for Young Scientists
(B), 15700079.

References
[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

Message Passing Interface Forum (1995). MPI: A message-passing interface standard.

Message Passing Interface Forum (1997). MPI-2: Extensions to the message-passing in-
terface standard.

Imamura, T., Tsujita, Y., Koide, H., and Takemiya, H. (2000). An architecture of Stampi:
MPI library on a cluster of parallel computers. In Recent Advances in Parallel Virtual Ma-
chine and Message Passing Interface, volume 1908 of Lecture Notes in Computer Science,
pages 200–207. Springer.

Tsujita, Y., Imamura, T., Takemiya, H., and Yamagishi, N. (2002). Stampi-I/O: A flexible
parallel-I/O library for heterogeneous computing environment. In Recent Advances in
Parallel Virtual Machine and Message Passing Interface, volume 2474 of Lecture Notes in
Computer Science, pages 288–295. Springer.

Carns, P., III, W. L., Ross, R., and Thakur, R. (2000). PVFS: A parallel file system for
Linux clusters. In Proceedings of the 4th Annual Linux Showcase and Conference, pages
317–327. USENIX Association.

Thakur, R., Gropp, W., and Lusk, E. (1999). On implementing MPI-IO portably and with
high performance. In Proceedings of the Sixth Workshop on Input/Output in Parallel and
Distributed Systems, pages 23–32.

PC Cluster Consortium. http://www.pccluster.org/.

Matsuda, M., Kudoh, T., and Ishikawa, Y. (2003). Evaluation of MPI implementations on
grid-connected clusters using an emulated WAN environment. In Proceedings of the 3rd
IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGrid 2003),
May 2003, pages 10–17. IEEE Computer Society.

Gropp, W., Lusk, E., Doss, N., and Skjellum, A. (1996). A high-performance, portable
implementation of the MPI Message-Passing Interface standard. Parallel Computing,
22(6):789–828.

AN APPROACH TOWARD MPI APPLICATIONS IN
WIRELESS NETWORKS *

Elsa M. Macías,1 Alvaro Suárez,1 and Vaidy Sunderam2

1Grupo de Arquitectura y Concurrencia (GAC)
Dept. de Ingeniería Telemática, Las Palmas de G. C. University

emacias@dit.ulpgc.es, asuarez@dit.ulpgc.es
2Dept. of Math and Computer Science
Emory University, Atlanta, USA

vss@mathcs.emory.edu

Abstract Many emerging situations and applications demand the reconciliation of the MPI
model, which implicitly assumes well-connected-ness and unform network ca-
pabilities, with wireless and mobile networks that are subject to variations and
intermittent connectivity. We describe middleware extensions that assist applica-
tions operating in such environments by providing pre-emptive Quality of Ser-
vice information. By exploiting this data, undesirable deadlock or indefinite
blocking scenarios can be effectively avoided. Based on experimentation with
an MPI based optimization application, we also show that good performance is
retained while providing the added value of state information about communi-
cation channels.

Keywords: IEEE 802.11, network-based computing, WLAN, network failures, MPI.

1. Introduction
With the increasing widespread adoption of the MPI standard, it is becom-

ing common for non-scientific distributed applications. Furthermore it is also
common for such applications to execute on varied heterogeneous resources,
including widely deployed IEEE 802.11 wireless networks. There are also
many long running scientific applications that communicate relatively infre-
quently, in which it is not unreasonable to use MPI over wireless networks on
mobile (or even stationary) devices. In previous work, we have shown that

* Research partially supported by Spanish CICYT under Contract TIC2001-0956-C04-03, The Canaries
Regional Government under Contract Pi 2003/021-C and Las Palmas de G.C. University UNI2002/17, and
by National Science Foundation grant ACI-0220183 and U.S. DoE grant DE-FG02-02ER25537

56 DISTRIBUTED AND PARALLEL SYSTEMS

IEEE 802.11 WLANs can be efficiently combined with wired LANs to exe-
cute parallel-distributed applications [[Macías and Suárez, 2002]]. However,
in these environments, sporadic wireless channel failures, abrupt disconnec-
tions of mobile computers (computers with wireless interfaces), congestion
spikes and other variations in the quality of communications can adversely
affect applications. Indeed, MPI applications written assuming certain levels
of network quality (e.g. by setting small timeout values) may even behave
erroneously, or may discontinue or fail. To permit graceful degradation in
such situations, additional middleware functionality is required. To the best of
our knowledge, LAM/MPI [[Burns et al., 1994]] and MPICH2 [[Gropp et al.,
1996]] do not include this functionality because MPI was not devised for wire-
less networks although its use is feasible in wireless communications.

Other solutions have been proposed to solve the above issues. It is well
known that Transmission Control Protocol (TCP) does not behave well for
WLAN [[Huston, 2001]]. A TCP based mechanism that warns all applications
could flood the wireless channel with a lot of irrelevant signalling informa-
tion to a particular asynchronous MPI application. In [[18]] is presented the
reliable socket connection a programmer could specify to recover the socket
connection in case of sporadic failures during an interval of seconds (specified
by the programmer). However, this interval of time is very difficult to adjust
in order to detect, for example, that mobile computers are temporarily out of
range. Moreover, to the best of our knowledge, reliable sockets have not yet
been incorporated into any MPI implementation.

In previous work [[Macías et al., 2004]] we presented a low overhead mech-
anism (of the order of miliseconds) at the application level, that combined with
our wireless network monitoring software detects wireless channel failures and
warns MPI applications to help the programmer take appropriate action. In
this paper we show how the user can restructure computations after detecting
a channel failure. The performance of this technique is better than other alter-
natives, such as the traditional process migration scheme for WLAN [[Morita
and Higaki, 2001]].

The rest of the paper is organized as follows. In section 2 we review the fault
detection mechanism. In section 3 a practical implementation of the mecha-
nism is applied to the parallel solution of unconstrained global optimization
for n-dimensional functions. Then, some experimental results are presented.
Finally we summarize with our conclusions and present directions for further
research.

2. Reviewing the Fault Detection Mechanism

Our LAMGAC middleware [[Macías et al., 2001]] maintains a registry of
wireless computers that collaborate with the MPI program in question and uses

An Approach Toward MPI Applications in Wireless Networks 57

a lightweight and efficient mechanism [[Macías et al., 2004]] to manage abrupt
disconnections of computers with wireless interfaces.

LAMGAC_Fault_detection function implements our software mechanism at
the MPI application level. The mechanism is based on injecting ICMP (Internet
Control Message Protocol) echo request packets from a specialized node to the
wireless computers and monitoring echo replies. The injection is only made if
LAMGAC_Fault_detection is invoked and enabled, and replies determine the
existence of an operational communication channel. This polling mechanism
should not penalize the overall program execution. In order to reduce the over-
head due to a long wait for a reply packet that would never arrive because of
a channel failure, an adaptive timeout mechanism is used. This timeout is cal-
culated with the collected information by our WLAN monitoring tool [[Tonev
et al., 2002]].

3. Unconstrained Global Optimization for n-Dimensional
Functions

One of the most interesting research areas in parallel nonlinear program-
ming is that of finding the global minimum of a given function defined in a mul-
tidimensional space. The search uses a strategy based on a branch and bound
methodology that recursively splits the initial search domain into smaller and
smaller parts named boxes. The local search algorithm (DFP [[Dahlquist and
Björck, 1974]] starts from a defined number of random points. The box con-
taining the smallest minimum so far and the boxes which contain a value next
to the smallest minimum will be selected as the next domains to be explored.
All the other boxes are deleted. These steps are repeated until the stopping
criterion is satisfied.

Parallel Program Without Wireless Channel State Detection

A general scheme for the application is presented in Fig. 1. The master pro-
cess (Fig. 1.b) is in charge of: sending the boundaries of the domains to be
explored in parallel in the current iteration (in the first iteration, the domain
is the initial search); splitting a portion of this domain into boxes and search-
ing for the local minima; gathering local minima from slave processes (values
and positions); doing intermediate computations to set the next domains to be
explored in parallel.

The slave processes (Fig. 1.a and Fig. 1.c) receive the boundaries of the
domains that are split in boxes locally knowing the process rank, the number of
processes in the current iteration, and the boundaries of the domain. The boxes
are explored to find local minima that are sent to the master process. The slave
processes spawned dynamically (within LAMGAC_Awareness_update) by the

58 DISTRIBUTED AND PARALLEL SYSTEMS

Figure 1. General scheme: a) slaves running on FC from the beginning of the application b)
master process c) slaves spawned dynamically and running on PC

master process make the same steps as the slaves running from the beginning
of the parallel application but the first iteration is made out of the main loop.

LAMGAC_Awareness_update sends the slaves the number of processes that
collaborate per iteration (num_procs) and the process’ rank (rank). With this
information plus the boundaries of the domains, the processes compute the
local data distribution (boxes) for the current iteration.

The volume of communication per iteration (Eq. 1) varies proportionally
with the number of processes and search domains (the number of domains to
explore per iteration is denoted as dom(i)).

where FC is the number of computers with wired connections. represents
the cost to send the boundaries (float values) of each domain (broadcasting to
processes in FC and point to point sends to processes in PC), is the
number of processes in the WLAN in the iteration is the num-
ber of minima (integer value) calculated by process in the iteration
is the data bulk to send the computed minimum to master process (value, co-
ordinates and box, all of them floats), and is the communication cost for
LAMGAC_Awareness_update.

Eq. 2 shows the computation per iteration: is the number of
boxes that explores the process in the iteration random_points are the total

An Approach Toward MPI Applications in Wireless Networks 59

points per box, DFP is the DFP algorithm cost and B is the computation made
by master to set the next intervals to be explored.

Parallel Program With Wireless Channel State Detection

A slave invalid process (invalid process in short) is the one that cannot com-
municate with the master due to sporadic wireless channel failures or abrupt
disconnections of portable computers.

In Fig. 2.a the master process receives local minima from slaves running
on fixed computers and, before receiving the local minima for the other slaves
(perhaps running on portable computers), it checks the state of the communi-
cation to these processes, waiting only for valid processes (the ones that can
communicate with the master).

Within a particular iteration, if there are invalid processes, the master will
restructure their computations applying the Cut and Pile technique [[Brawer,
1989]] for distributing the data (search domains) among the master and the
slaves running on FC. In Fig. 2.c we assume four invalid processes (ranks equal
to 3, 5, 9 and 11) and two slaves running on FC. The master will do the tasks
corresponding to the invalid processes with ranks equal to 3 and 11, and the
slaves will do the tasks of processes with rank 5 and 9 respectively. The slaves
split the domain in boxes and search the local minima that are sent to master
process (Fig. 2.b). The additional volume of communication per iteration (only

Figure 2. Modified application to consider wireless channel failures: a) master process b)
slave processes running on FC c) an example of restructuring

60 DISTRIBUTED AND PARALLEL SYSTEMS

in presence of invalid processes) is shown in Eq. 3.

C represents the cost to send the ranks (integer values) of invalid processes
(broadcast message to processes in the LAN), and is the number of
invalid processes in the WLAN in the iteration

Eq. 4 shows the additional computation in the iteration i in presence of in-
valid processes: is the number of boxes that explores the process
corresponding to the invalid processes

Experimental Results

The characteristics of computers used in the experiments are presented in
Fig. 3.a. All the machines run under LINUX operating system. The input
data for the optimization problem are: Shekel function for 10 variables, initial
domain equal to [-50,50] for all the variables and 100 random points per box.
For all the experiments shown in Fig. 3.b we assume a null user load and the
network load is due solely to the application. The experiments were repeated
10 times obtaining a low standard deviation.

For the configurations of computers presented in Fig. 3.c, we measured the
execution times for the MPI parallel (values labelled as A in Fig. 3.b) and
for the equivalent LAMGAC parallel program without the integration with the
wireless channel detection mechanism (values labelled as B in Fig. 3.b). To
make comparisons we do not consider either input nor output of wireless com-
puters. As is evident, A and B results are similar because LAMGAC middle-
ware introduces little overhead.

The experimental results for the parallel program with the integration of the
mechanism are labelled as C, D and E in Fig. 3.b. LAMGAC_Fault_detection
is called 7 times, once per iteration. In experimental results we named C we
did not consider the abrupt outputs of computers because we just only want
to test the overhead of LAMGAC_Fault_detection function and the conditional
statements added to the parallel program to consider abrupt outputs. The exe-
cution time is slightly higher for the C experiment compared to A and B results
because of the overhead of LAMGAC_Fault_detection function and the condi-
tional statements.

We experimented with friendly output of PC1 during the 4-th iteration. The
master process receives results computed by the slave process running on PC1

An Approach Toward MPI Applications in Wireless Networks 61

before it is disconnected so the master does not restructure the computations
(values labelled as D). We experimented with the abrupt output of PC1 dur-
ing the step 4 so the master process must restructure the computations before
starting the step 5. The execution times (E values) with 4 and 6 processors are
higher than D values because the master must restructure the computations.

We measure the sequential time obtaining on the slowest computer
and on the fastest computer. The sequential program generates 15 ran-
dom points per box (instead of 100 as the parallel program) and the stopping
criterion is less strict than for the parallel program, obtaining less accurate re-
sults. The reason for choosing these input data different from the parallel one
is because otherwise the convergence is too slow in the sequential program.

4. Conclusions and Future Work

A great concern in wireless communications is the efficient management of
temporary or total disconnections. This is particularly true for applications that
are adversely affected by disconnections. In this paper we put in practice our

Figure 3. Experimental results: a) characteristics of the computers b) execution times (in
minutes) for different configurations and parallel solutions c) details about the implemented
parallel programs and the computers used

62 DISTRIBUTED AND PARALLEL SYSTEMS

wireless connectivity detection mechanism applying it to an iterative loop car-
ried dependencies application. Integrating the mechanism with MPI programs
avoids the abrupt termination of the application in presence of wireless discon-
nections, and with a little additional programming effort, the application can
run to completion.

Although the behavior of the mechanism is acceptable and its overhead is
low, we keep in mind to improve our approach adding dynamic load balanc-
ing and overlapping the computations and communications with the channel
failures management.

References

[Brawer, 1989] Brawer, S. (1989). Introduction to Parallel Programming. Academic Press,
Inc.

[Burns et al., 1994] Burns, G., Daoud, R., and Vaigl, J. (1994). LAM: An open cluster envi-
ronment for MPI. In Proceedings of Supercomputing Symposium, pages 379–386.

[Dahlquist and Björck, 1974] Dahlquist, G. and Björck, A. (1974). Numerical Methods.
Prentice-Hall Series in Automatic Computation.

[Gropp et al., 1996] Gropp, W., Lusk, E., Doss, N., and Skjellum, A. (1996). A high-
performance, portable implementation of the MPI message passing interface standard. Par-
allel Computing, 22(6):789–828.

[Huston, 2001] Huston, G. (2001). TCP in a wireless world. IEEE Internet Computing,
5(2):82–84.

[Macías and Suárez, 2002] Macías, E. M. and Suárez, A. (2002). Solving engineering appli-
cations with LAMGAC over MPI-2. In European PVM/MPI Users’ Group Meeting,
volume 2474, pages 130–137, Linz, Austria. LNCS, Springer Verlag.

[Macías et al., 2001] Macías, E. M., Suárez, A., Ojeda-Guerra, C. N., and Robayna, E. (2001).
Programming parallel applications with LAMGAC in a LAN-WLAN environment. In

European PVM/MPI Users’ Group Meeting, volume 2131, pages 158–165, Santorini.
LNCS, Springer Verlag.

[Macías et al., 2004] Macías, E. M., Suárez, A., and Sunderam, V. (2004). Efficient monitoring
to detect wireless channel failures for MPI programs. In Euromicro Conference on
Parallel, Distributed and Network-Based Processing, pages 374–381, A Coruña, Spain.

[Morita and Higaki, 2001] Morita, Y. and Higaki, H. (2001). Checkpoint-recovery for mobile
computing systems. In International Conference on Distributed Computing Systems, pages
479–484, Phoenix, USA.

[Tonev et al., 2002] Tonev, G., Sunderam, V., Loader, R., and Pascoe, J. (2002). Location and
network issues in local area wireless networks. In International Conference on Architecture
of Computing Systems: Trends in Network and Pervasive Computing, Karlsruhe, Germany.

[Zandy and Miller, 2002] Zandy, V. and Miller, B. (2002). Reliable network connections. In
Annual International Conference on Mobile Computing and Networking, pages 95–106,

Atlanta, USA.

DEPLOYING APPLICATIONS
IN MULTI-SAN SMP CLUSTERS

Albano Alves1, António Pina2, José Exposto1 and José Rufino1

l ESTiG, Instituto Politécnico de Bragança.

{albano, exp, rufino}@ipb.pt

2 Departamento de Informática, Universidade do Minho.

pina@di.uminho.pt

Abstract The effective exploitation of multi-SAN SMP clusters and the use of generic
clusters to support complex information systems require new approaches. On the
one hand, multi-SAN SMP clusters introduce another level of parallelism which
is not addressed by conventional programming models that assume a homoge-
neous cluster. On the other hand, traditional parallel programming environments
are mainly used to run scientific computations, using all available resources, and
therefore applications made of multiple components, sharing cluster resources
or being restricted to a particular cluster partition, are not supported.

We present an approach to integrate the representation of physical resources,
the modelling of applications and the mapping of application into physical re-
sources. The abstractions we propose allow to combine shared memory, message
passing and global memory paradigms.

Keywords: Resource management, application modelling, logical-physical mapping

1. Introduction

Clusters of SMP (Symmetric Multi-Processor) workstations interconnected
by a high-performance SAN (System Area Network) technology are becom-
ing an effective alternative for running high-demand applications. The as-
sumed homogeneity of these systems has allowed to develop efficient plat-
forms. However, to expand computing power, new nodes may be added to an
initial cluster and novel SAN technologies may be considered to interconnect
these nodes, thus creating a heterogeneous system that we name multi-SAN
SMP cluster.

Clusters have been used mainly to run scientific parallel programs. Nowa-
days, as long as novel programming models and runtime systems are devel-

64 DISTRIBUTED AND PARALLEL SYSTEMS

oped, we may consider using clusters to support complex information systems,
integrating multiple cooperative applications.

Recently, the hierarchical nature of SMP clusters has motivated the investi-
gation of appropriate programming models (see [8] and [2]). But to effectively
exploit multi-SAN SMP clusters and support multiple cooperative applications
new approaches are still needed.

2. Our Approach

Figure 1 (a) presents a practical example of a multi-SAN SMP cluster mixing
Myrinet and Gigabit. Multi-interface nodes are used to integrate sub-clusters
(technological partitions).

Figure 1. Exploitation of a multi-networked SMP cluster.

To exploit such a cluster we developed RoCL [1], a communication library
that combines GM – the low-level communication library provided by Myri-
com – and MVIA – a Modular implementation of the Virtual Interface Ar-
chitecture. Along with a basic cluster oriented directory service, relying on
UDP broadcast, RoCL may be considered a communication-level SSI (Single
System Image), since it provides full connectivity among application entities
instantiated all over the cluster and also allows to register and discover entities
(see fig. 1(b)).

Now we propose a new layer, built on top of RoCL, intended to assist
programmers in setting-up cooperative applications and exploiting cluster re-
sources. Our contribution may be summarized as a new methodology compris-
ing three stages: (i) the representation of physical resources, (ii) the modelling
of application components and (iii) the mapping of application components
into physical resources. Basically, the programmer is able to choose (or assist
the runtime in) the placement of application entities in order to exploit locality.

3. Representation of Resources

The manipulation of physical resources requires their adequate representa-
tion and organization. Following the intrinsic hierarchical nature of multi-SAN

Deploying Applications in Multi-SAN SMP Clusters 65

SMP clusters, a tree is used to lay out physical resources. Figure 2 shows a re-
source hierarchy to represent the cluster of figure 1(a).

Basic Organization

Figure 2. Cluster resources hierarchy.

Each node of a resource tree confines a particular assortment of hardware,
characterized by a list of properties, which we name as a domain. Higher-
level domains introduce general resources, such as a common interconnection
facility, while leaf domains embody the most specific hardware the runtime
system can handle.

Properties are useful to evidence the presence of qualities – classifying prop-
erties – or to establish values that clarify or quantify facilities – specifying
properties. For instance, in figure 2, the properties Myrinet and Gigabit
divide cluster resources into two classes while the properties GFS=… and
CPU=… establish different ways of accessing a global file system and quan-
tify the resource processor, respectively.

Every node inherits properties from its ascendant, in addition to the prop-
erties directly attached to it. That way, it is possible to assign a particular
property to all nodes of a subtree by attaching that property to the subtree root
node. Node will thus collect the properties GFS=/ethfs, FastEthernet,
GFS=myrfs, Myrinet, CPU=2 and Mem=512.

By expressing the resources required by an application through a list of
properties, the programmer instructs the runtime system to traverse the re-
source tree and discover a domain whose accumulated properties conform to
the requirements. Respecting figure 2, the domain Node fulfils the require-
ments (Myrinet) (CPU=2), since it inherits the property Myrinet from its
ascendant.

If the resources required by an application are spread among the domains of
a subtree, the discovery strategy returns the root of that subtree. To combine
the properties of all nodes of a subtree at its root, we use a synthesization mech-
anism. Hence, Quad Xeon Sub-Cluster fulfils the requirements (Myrinet)
(Gigabit) (CPU=4*m).

66 DISTRIBUTED AND PARALLEL SYSTEMS

Virtual Views

The inheritance and the synthesization mechanisms are not adequate when
all the required resources cannot be collected by a single domain. Still respect-
ing figure 2, no domain fulfils the requirements (Myrinet) (CPU=2*n+4*m)1.
A new domain, symbolizing a different view, should therefore be created with-
out compromising current views. Our approach introduces the original/alias
relation and the sharing mechanism.

An alias is created by designating an ascendant and one or more originals.
In figure 2, the domain Myrinet Sub-cluster (dashed shape) is an alias whose
originals (connected by dashed arrows) are the domains Dual PIII and Quad
Xeon. This alias will therefore inherit the properties of the domain Cluster and
will also share the properties of its originals, that is, will collect the proper-
ties attached to its originals as well as the properties previously inherited or
synthesized by those originals.

By combining original/alias and ascendant/descendant relations we are able
to represent complex hardware platforms and to provide programmers the mech-
anisms to dynamically create virtual views according to application require-
ments. Other well known resource specification approaches, such as the RSD
(Resource and Service Description) environment [4], do not provide such flex-
ibility.

4. Application Modelling

The development of applications to run in a multi-SAN SMP cluster requires
appropriate abstractions to model application components and to efficiently
exploit the target hardware.

Entities for Application Design

The model we propose combines shared memory, global memory and mes-
sage passing paradigms through the following six abstraction entities:

domain - used to group or confine related entities, as for the representa-
tion of physical resources;

operon - used to support the running context where tasks and memory
blocks are instantiated;

task - a thread that supports fine-grain message passing;

mailbox - a repository to/from where messages may be sent/retrieved by
tasks;

memory block - a chunk of contiguous memory that supports remote
accesses;

memory block gather - used to chain multiple memory blocks.

Deploying Applications in Multi-SAN SMP Clusters 67

Following the same approach that we used to represent and organize physi-
cal resources, application modelling comprises the definition of a hierarchy of
nodes. Each node is one of the above entities to which we may attach prop-
erties that describe its specific characteristics. Aliases may also be created by
the programmer or the runtime system to produce distinct views of the applica-
tion entities. However, in contrast to the representation of physical resources,
hierarchies that represent application components comprise multiple distinct
entities that may not be organized arbitrarily; for example, tasks must have no
descendants.

Programmers may also instruct the runtime system to discover a particu-
lar entity in the hierarchy of an application component. In fact, application
entities may be seen as logical resources that are available to any application
component.

A Modelling Example

Figure 3 shows a modelling example concerning a simplified version of
SIRe2, a scalable information retrieval environment. This example is just in-
tended for explaining our approach; specific work on web information retrieval
may be found eg in [3, 5].

Figure 3. Modelling example of the SIRe system.

Each Robot operon represents a robot replica, executing on a single ma-
chine, which uses multiple concurrent tasks to perform each of the crawling
stages. At each stage, the various tasks compete for work among them. Stages
are synchronized through global data structures in the context of an operon.
In short, each robot replica exploits an SMP workstation through the shared
memory paradigm.

Within the domain Crawling, the various robots cooperate by partitioning
URLs. After the parse stage, the spread stage will thus deliver to each Robot
operon its URLs. Therefore Download tasks will concurrently fetch messages
within each operon. Because no partitioning guarantees, by itself, a perfect

68 DISTRIBUTED AND PARALLEL SYSTEMS

balancing of the operons, Download tasks may send excedentary URLs to the
mailbox Pending. This mailbox may be accessed by any idle Download task.
That way, the cooperation among robots is achieved by message passing.

The indexing system represented by the domain Indexing is purposed to
maintain a matrix connecting relevant words and URLs. The large amount of
memory required to store such a matrix dictate the use of several distributed
memory fragments. Therefore, multiple Indexer operons are created, each to
hold a memory block. Each indexer manages a collection of URLs stored in
consecutive matrix rows, in the local memory block, thus avoiding references
to remote blocks.

Finally, the querying system uses the disperse memory blocks as a single
large global address space to discover the URLs of a given word. Memory
blocks are chained through the creation of aliases under a memory block gather
which is responsible to redirect memory references and to provide a basic mu-
tual exclusion access mechanism. Accessing the matrix through the gather
Word/URL will then result in transparent remote reads throughout a matrix
column. The querying system thus exploits multiple nodes through the global
memory paradigm.

5. Mapping Logical into Physical Resources

The last step of our methodology consists on merging the two separate hier-
archies produced on the previous stages to yield a single hierarchy.

Laying Out Logical Resources

Figure 4 presents a possibility of integrating the application depicted in fig-
ure 3 into the physical resources depicted in figure 2.

Figure 4. Mapping logical hierarchy into physical.

Deploying Applications in Multi-SAN SMP Clusters 69

Operons, mailboxes and memory block gathers must be instantiated un-
der original domains of the physical resources hierarchy. Tasks and memory
blocks are created inside operons and so have no relevant role on hardware
appropriation. In figure 4, the application domain Crawling is fundamental
to establish the physical resources used by the crawling sub-system, since the
operons Robot are automatically spread among cluster nodes placed under the
originals of that alias domain.

To preserve the application hierarchy conceived by the programmer, the run-
time system may create aliases for those entities instantiated under original
physical resource domains. Therefore, two distinct views are always present:
the programmer’s view and the system view.

The task Parse in figure 4, for instance, can be reached by two distinct paths:
Cluster Dual Athlon Node Robot Parse – the system view –
and Cluster SIRe Crawling Parse – the program–
mer’s view. No alias is created for the task Parse because the two views had
already been integrated by the alias domain Robot; aliases allow to jump be-
tween views.

Programmer’s skills are obviously fundamental to obtain an optimal fine-
grain mapping. However, if the programmer instantiates application entities
below the physical hierarchy root, the runtime system will guarantee that the
application executes but efficiency may decay.

Dynamic Creation of Resources

Logical resources are created at application start-up, since the runtime sys-
tem automatically creates an initial operon and a task, and when tasks execute
primitives with that specific purpose. To create a logical resource it is neces-
sary to specify the identifier of the desired ascendant and the identifiers of all
originals in addition to the resource name and properties. To obtain the iden-
tifiers required to specify the ascendant and the originals, applications have to
discover the target resources based on their known properties.

When applications request the creation of operons, mailboxes or memory
block gathers, the runtime system is responsible for discovering a domain that
represents a cluster node. In fact, programmers may specify a higher-level
domain confining multiple domains that represent cluster nodes. The runtime
system will thus traverse the corresponding sub-tree in order to select an ade-
quate domain.

After discovering the location for a specific logical resource, the runtime
system instantiates that resource and registers it in the local directory server.
The creation and registration of logical resources is completely distributed and
asynchronous.

70 DISTRIBUTED AND PARALLEL SYSTEMS

6. Discussion
Traditionally, the execution of high performance applications is supported

by powerful SSIs that transparently manage cluster resources to guarantee high
availability and to hide the low-level architecture eg [7]. Our approach is to
rely on a basic communication-level SSI used to implement simple high-level
abstractions that allow programmers to directly manage physical resources.

When compared to a multi-SAN SMP cluster, a metacomputing system is
necessarily a much more complex system. Investigation of resource manage-
ment architectures has already been done in the context of metacomputing
eg [6]. However, by extending the resource concept to include both physi-
cal and logical resources and by integrating on a single abstraction layer (i) the
representation of physical resources, (ii) the modelling of applications and (iii)
the mapping of application components into physical resources, our approach
is innovative.

Notes

1.

2.

n and m stand for the number of nodes of sub-clusters Dual PIII and Quad Xeon.

A research supported by FCT/MCT, Portugal, contract POSI/CHS/41739/2001.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

A. Alves, A. Pina, J. Exposto, and J. Rufino. RoCL: A Resource oriented Communication
Library. In Euro-Par 2003, pages 969–979, 2003.

S. B. Baden and S. J. Fink. A Programming Methodology for Dual-tier Multicomputers.
IEEE Transactions on Software Engineering, 26(3):212–226, 2000.

S. Brin and L. Page. The Anatomy of a Large-Scale Hypertextual Web Search Engine.
Computer Networks and ISDN Systems, 30(1-7):107–117, 1998.

M. Brune, A. Reinefeld, and J. Varnholt. A Resource Description Environment for Dis-
tributed Computing Systems. In International Symposium on High Performance Dis-
tributed Computing, pages 279–286, 1999.

J. Cho and H. Garcia-Molina. Parallel Crawlers. In 11th International World-Wide Web
Conference, 2002.

K. Czajkowski, I. Foster, N. Karonis, C. Kesselman, S. Martin, W. Smith, and S. Tuecke.
A Resource Management Architecture for Metacomputing Systems. In IPPS/SPDP’98,
pages 62–82, 1998.

P. Gallard, C. Morin, and R. Lottiaux. Dynamic Resource Management in a Cluster for
High-Availability. In Euro-Par 2002, pages 589–592. Springer, 2002.

A. Gursoy and I. Cengiz. Mechanism for Programming SMP Clusters. In PDPTA ’99,
volume IV, pages 1723–1729, 1999.

I I I

PROGRAMMING TOOLS

This page intentionally left blank

EXAMPLES OF MONITORING AND PROGRAM
ANALYSIS ACTIVITIES WITH DEWIZ

Rene Kobler, Christian Schaubschläger,
Bernhard Aichinger, Dieter Kranzlmüller, and Jens Volkert
GUP, Joh. Kepler University Linz
Altenbergerstr. 69, A-4040 Linz, Austria

kobler@gup.uni-linz.ac.at

DEWIZ (Debugging Wizard) was designed to offer a modular and flexible
approach for processing huge amounts of program state data during program
analysis activities. Our original fundament for the work on DEWIZ was the
Monitoring and Debugging environment MAD [4], essentially consisting of
the monitoring tool NOPE and the tracefile visualization tool ATEMPT. A ma-
jor difficulty of MAD was the amount of generated debugging data, some sys-
tems could even suffer from problems to store all produced trace data. Another
reason for considering the development of an alternate debugging environment
was MAD’s limitation to message passing programs. DEWIZ, the more uni-
versal solution, should enable program analysis tasks based on the event graph
as representation of a program’s behavior. Additionally, a modular, hence flex-
ible and extensible approach as well as graphical representation of a program’s
behavior is desired [5].

Related work in this area includes P-GRADE [1] or Vampir [11]. P-GRADE
supports the whole life cycle of parallel program development. Monitoring as

Abstract As parallel program debugging and analysis remain a challenging task and dis-
tributed computing infrastructures become more and more important and avail-
able nowadays, we have to look for suitable debugging environments to address
these requirements. The Debugging Wizard DEWIZ is introduced as modular
and event-graph based approach for monitoring and program analysis activities.
Example scenarios are presented to highlight advantages and ease of the use
of DEWIZ for parallel program visualization and analysis. Users are able to
specify their own program analysis activities by formulating new event graph
analysis strategies within the DEWIZ framework.

Keywords: Event Graph, Monitoring, Program Analysis, User-defined Visualization

1. Introduction

well as program visualization possibilities are both offered by the P-GRADE
environment. GRM which is part of P-GRADE is responsible for program
monitoring tasks, users are able to specify filtering rules in order to reduce
recorded trace data. PROVE, also part of P-GRADE, takes on the part of
visualization of message-passing programs in form of space-time diagrams.
Vampir, result of a cooperation of Pallas and Technical University of Dresden,
provides a large set of facilities for displaying the execution of MPI-programs.
An interesting feature of Vampir is the ability to visualize programs in differ-
ent levels of detail. Additionally many kinds of statistical evaluation can be
peformed. On the other hand, EARL [13] which stands for Event Analysis and
Recognition Language allows to construct user- and domain- specific event
trace analysis tools. Paradyn [8] is rather laid out for performance analysis and
optimizations of parallel programs. Its main field of application is the location
of performance bottlenecks. Many other tools exist which adress the area of
parallel program observation and performance analysis, a couple of them (all
of them considering MPI programs) are reviewed in [10].

Unlike DEWIZ, most of the previously mentioned developments suffer from
their limitation to certain programming paradigms. The paper is organized as
follows: Section 2 introduces the basics of DEWIZ. Afterwards, Section 3
presents concrete examples, concerning monitoring and program analysis us-
ing DEWIZ. VISWIZ expatiated in Section 4 introduces a novel way for user-
defined program visualizations. The paper is summarized by concluding and
giving an outlook on future work.

74 DISTRIBUTED AND PARALLEL SYSTEMS

2. Overview of DEWIZ

The event graph acts as a basic principle in the DEWIZ infrastructure; it
consists of a set of events and a set of happend-before relations connecting
them [3]. By linking such DEWIZ modules together, a kind of event-graph
processing pipeline is built. Basically we distinguish between three kinds of
modules, that are event graph generation modules, automatic analysis modules
and data access modules.

Event graph generation modules are responsible for generating event graph
streams while automatic analysis modules process these streams by means of
different criteria. Data access modules present results produced by predecess-
ing modules to the user. According to this module-oriented structure, a proto-
col has been specified to define the communication between different modules.
The event graph stream consists of two kinds of data structures. For events
we use the structure type, data), where indicates the timestamp of oc-
curence on process/thread The field type usually determines the content
of data where additional event data can be stored. characterizes a
happend-before relation, connecting corresponding events.

In addition, modules in a DEWIZ system have to be organized in some
way. A special module called Sentinel assumes this function. Modules have to
register to the sentinel to be part of a DEWIZ system by sending special control
messages to this module. On his part the sentinel has to confirm a registration
request by returning a special control message to the inquiring module.

The required functionality is offered to DEWIZ-modules by the DEWIZ

framework, currently available in C/C++ and Java, respectively. An important
feature of this framework is the supply of a controller module which is a visual
representation of the information collected and processed by the Sentinel. By
dint of the controller control messages can be issued to the sentinel to affect
the behavior of a DEWIZ system. A sample DEWIZ system including a dia-
log for submitting control messages is displayed in Figure 1. Further needed
functionalities will be exemplified in the course of the upcoming sections.

After explaining the basics of DEWIZ, we now present a few extensions and
applications to show the underline of this approach. The following list gives a
preview of contents of the following sections:

Monitoring and Program Analysis Activities with DeWiz 75

Figure 1. Controller module, once as diagram, once as table + control message dialog

Visualization of OpenMP Programs

Online Monitoring with OCM

User-Defined Visualizations

3. Analysis of OpenMP and PVM Pograms with DEWIZ

As clusters of SMP’s gained more and more importance in the past few
years, it’s essential to provide program analysis environments which support

76 DISTRIBUTED AND PARALLEL SYSTEMS

debugging of shared-memory programs. Since OpenMP has emerged to a
quasi - standard for programming shared-memory architectures, this section
demonstrates how OpenMP programs can be visualized in a DEWIZ-based
system. Our DEWIZ module observes the execution of omp_set_lock as
well as omp_unset_lock operations using the POMP performance tool inter-
face [9]. DEWIZ-events and happend-before relations will be generated during
program execution and forwarded to a consuming visualization module. Fig-
ure 2 illustrates the execution of an OpenMP program consisting of 5 threads
in a sample scenario. The small circles indicate set- and unset-events (for es-
tablishing a critical region) whereas the arrows denote that the ownership of a
semaphore changes from one thread to another.For a more detailed description
of this implementation please refer to [2].

The next example outlines a DEWIZ system for on-line visualizing PVM-
programs as well as for finding communication patterns in such programs. Fig-
ure 3 shows an overview of the system where the doted rectangle contains the
DEWIZ modules.

Figure 3. Program visualization and pattern matching in a PVM-based environment using
D EW IZ

Figure 2. OpenMP Program Visualization

Monitoring and Program Analysis Activities with DeWiz 77

PVM-programs are monitored using a concrete implementation of OMIS
(Online Monitoring Interface Specification) [7], which defines a universally
usable on-line monitoring interface. Due to its event-action-model it is well
suited for being integrated in a DEWIZ-based environment. Another good
reason for applying OMIS-based program observation is its on-line charac-
teristic. Occured events in our investigated PVM-program can immediately
be generated using the OCM (Omis Compliant Monitoring) monitoring sys-
tem [12] which is a reference implementation of the OMIS specification. The
ODIM module (OMIS DEWIZ Interface Module) bridges the gap between a
OMIS-based monitoring system and DEWIZ, moreover it is responsible for
generating a DEWIZ-specific event-graph stream. In our sample system this
stream is sent to a visualization module as well as to a pattern matching module
(DPM). Program visualization in terms of a space-time-diagram is carried out
on-the-fly during its execution (see Figure 4). The horizontal lines represent
the execution of the particular processes (in Figure 4 we have 4 processes),
the spots indicate send and receive events, respectively. At present the DPM-
module provides only text-based output. Communication patterns, i.e the two
hinted in the space-time-diagram are currently being detected.

Figure 4. DEWIZ-Controller and Visualization of the PVM-Program

4. User-defined Visualization of Event-Graphs using the
VISWIZ-Client

As visualization is indispensable for parallel program activities, this sec-
tion introduces VISWIZ, the Visualization Wizard for creating user-defined
visualizations of events graphs. Some of the available tools offer a variety of
diagrams or animations to support program analysis activities. Some of them
requires special program instrumentation to achieve the desired kind of visual-

ization. Most tools are also concentrated on certain programming paradigms.
The abstract description of runtime information and program states using the
event graph decouples from programming paradigms. We try to map events on
graphical objects to facilitate different visualizations of event graphs. VISWIZ

is the implementation of a DEWIZ consumer module which takes on the task
of user-defined visualization. As visualization tools should not be restricted
on a small amount of applications, the modular- and event-graph-based con-
cept of DEWIZ enables certain pre-processing activities and paradigm- and
platform-independent visualization.

DEWIZ pursues on-line analysis which means that there is no point of time
where the event graph is fully available within the VISWIZ system. To achieve
a correct visualization, VISWIZ has to accomplish following steps:

78 DISTRIBUTED AND PARALLEL SYSTEMS

1 Description of event-datatypes

2 Rearrangement of the event graph

3 Processing of the particular events

As alluded in Section 2, DEWIZ events may contain additional data depend-
ing on the event-type. Therefore it’s crucial to know which events are gener-
ated by a corresponding producer module during analysis activities. Some
default event-types exist, that are substantial for event processing in VISWIZ.
The type names send and receive characterize such event types and should
not be redefined by the user. DEWIZ has no knowledge of the whole con-
figuration of the event graph. As it is possible that more than one producing
module forwards event data to one consuming module and interconnection net-
work latencies may cause out-of-order receipts, the order of the graph has to
be effectuated by a seperate module (see step 2). The so-called HBR-Resolver
(currently integrated in VISWIZ) is conceived as a pass-through module and
takes on the reordering of events. It works with the aid of additional process
buffers, every send and receive event is inserted in its corresponding buffer.
When receiving a happend-before relation two possibilities arise:

if both participated events are inside the process buffers, the correspond-
ing send event will be further processed.

if only one or none of the participated events are inside the process
buffers, the happend-before relation is saved and processed after receiv-
ing both participated events.

Logical clocks are adapted after removing events from the process buffers
for further processing. According to Lamport [6] receive event’s logical clocks
will be revised by adding the corresponding send’s logical clock. After the
work of HBR-Resolver, all happend-before events are removed from the event

The <eventrep>-tag contains different <class>-elements; each of these
elements include an object class as parameter which is responsible for the
description of graphical objects. The SVG standard [14] serves as basis for
specifying these objects. The following example should indicate how the rep-
resentation of an event is accomplished. The <circle>-tag creates a circle for
each event at the given coordinate:

Event-type declarations as well as mapping rules are stored in configuration
files which are loaded when starting VISWIZ. VISWIZ additionally supports
the creation of so-called adaptors. Adaptors are applied when statistical data
over the program execution is required. They are specified using the XML
language as well. Figure 5 illustrates the implementation of an adaptor, which
denotes the communication times of the particular processes.

Basically VISWIZ is used like any other consumer module in the DEWIZ

environment. Additionally to the registration process, VISWIZ users also have
to select files for configuring the event mapping and the visualization, respec-
tively. After loading the configuration data a dialog is opened where the user
has to start the visualization process. Alternatively to this, users have the pos-
sibility to pause and resume the visualization as well as dumping the currently
displayed information in form of a SVG-document for debugging purposes.
Figure 6 pictures an event-graph as space-time-diagram, the window in the
foreground shows a halted visualization.

Monitoring and Program Analysis Activities with DeWiz 79

stream. Thus, after the work of this pass-through module we do not have an
eventgraph anymore, according to its definition.

After step 2 VISWIZ proceeds with step 3 by mapping each event to its
dedicated graphical object. Therefore the user has to specify mapping rules
inside a XML-File. The following listing shows an example which denotes
how the mapping of events to graphical objects takes place:

80 DISTRIBUTED AND PARALLEL SYSTEMS

Figure 5. VISWIZ module showing execution times of send and receive events

Figure 6. Event graph visualization, once in running mode, once in stopped mode

Apart from DEWIZ’s programming paradigm independency, its modular
attempt makes it predestinated to cope with demands brought with newer com-
puting environments like the Grid. Modules can be arranged arbitrarily, i.e. in
the sample DEWIZ system outlined in Section 3 the OpenMP module could
be placed at an OpenMP-friendly computing architecture, while the program
visualization could be done on a simple low-end PC. Basic improvements com-
pared to earlier DEWIZ versions have been made in the area of program visu-
alization. The corresponding module VISWIZ (introduced in Section 4) offers
completely user-defined visualizations in a very easy way. At the moment our
efforts are concentrated in adapting the DEWIZ framework to run on a grid-
based environment, additionally the pattern matching module is extended to
present detected patterns in a more intuitive way.

Acknowledgements. Thanks to Roland Wismüller for his input to the OCM
related DeWiz modules. Furthermore, our colleagues at GUP Linz provided

5. Conclusions and Future Work

Kacsuk P. Visual Parallel Programming on SGI Machines. Proc. of the SGI Users’ Confer-
ence, Krakow, Poland (2000).

Kobler R., Kranzlmüller D., and Volkert J. Online Visualization of OpenMP Programs in
the DeWiz Environment. Proc. of the 5th International Conference on Parallel Processing
and Applied Mathematics (PPAM 2003), Czestochowa, Poland (September 2003).

Kranzlmüller, D. Event Graph Analysis for Debugging Massively Parallel Pro-
grams. PhD Thesis, GUP Linz, Joh. Kepler University Linz (September 2000).
http://www.gup.uni–linz.ac.at/~dk/thesis

Kranzlmüller D., Schaubschläger Ch., and Volkert J. A Brief Overview of the MAD De-
bugging Activities. Proc. of the Fourth International Workshop of Automated Debugging
(AADEBUG 2000), Munich, Germany (August 2000).

Kranzlmüller D., Schaubschläger Ch., Scarpa M., and Volkert J. A Modular Debugging
Infrastructure for Parallel Programs. Proc. ParCo 2003, Dresden, Germany (September
2003).

Lamport L. Time, clocks, and the ordering of events in a distributed system. Communica-
tions of the ACM, Vol. 21, No. 7 (July 1978).

Ludwig T., and Wismüller R. OMIS 2.0 – A Universal Interface for Monitoring Systems.
Proc. of the 4th European PVM/MPI Users’ Group Meeting, Cracow, Poland (November
1997).

Miller B.P., Callaghan M.D., Cargille J.M., Hollingsworth J.K., Irvin R.B., Karavanic
K.L., Kunchithapadam K., and Newhall T. The Paradyn Parallel Performance Measure-
ment Tools. IEEE Computer 28(11), (November 1995).

Mohr, B., Mallony, A., Hoppe, H.-C., Schlimbach, F., Haab, G., Hoefinger, J. and Shah. S.
A Performance Monitoring Interface for OpenMP. Proc. of the 4th European Workshop on
OpenMP (EWOMP’02), Rome, Italy (September 2002).

Moore, S., Cronk, D., London, K., and Dongarra, J. Review of Performance Analysis Tools
for MPI Parallel Programs. Proc. of the 8th European PVM/MPI Users’ Group Meeting,
Santorini, Greece (September 2001).

Nagel W.E., Arnold A., Weber M., and Hoppe H.-C. Vampir: Visualization and Analysis
of MPI Resources. Supercomputer 63, Vol. 12, No. 1 (1996).

Wismüller R. Interoperability Support in the Distributed Monitoring System OCM. Proc.
of the 3rd International Conference on Parallel Processing and Applied Mathematics
(PPAM’99), Kazimierz Dolny, Poland (September 1999)

Wolf F., and Mohr B. EARL - A Programmable and Extensible Toolkit for Analyz-
ing Event Traces of Message Passing Programs. Technical Report FZJ-ZAM-IB-9803,
Forschungszentrum Jülich, Zentralinstitut für Angewandte Mathematik (April 1998).

World Wide Web Consortium (W3C). Scalable Vector Graphics (SVG) 1.1 spezification.
Technical Report, http://www.w3.org/TR/SVG11.

Monitoring and Program Analysis Activities with DeWiz 81

some valuable input to this work, and we are most grateful to Michael Scarpa
and Reinhard Brandstätter.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

This page intentionally left blank

INTEGRATION OF FORMAL VERIFICATION
AND DEBUGGING METHODS
IN P-GRADE ENVIRONMENT*

Róbert Lovas, Bertalan Vécsei
Computer and Automation Research Institute, Hungarian Academy of Sciences (MTA SZTAKI)

[rlovas|vecsei]@sztaki.hu

P-GRADE is an integrated programming environment for development and
execution of parallel programs on various platforms [3][16]. It consists of
several software tools, which assist the different steps of software develop-
ment; it can be used to create, execute, test and tune parallel applications. In
P-GRADE, parallel programs can be constructed with GRED graphical editor
according to the syntax and semantics of GRAPNEL [3] language. GRAPNEL
is a hybrid programming language in the sense that it uses both graphical and
textual representations to describe the whole parallel application.

In this paper we introduce the further development of macrostep based
DIWIDE debugger in the frame of P-GRADE environment. A particular chal-

* The research described in this paper has been supported by the following projects and grants: Hungarian
OTKA T042459, and Hungarian IHM 4671/1/2003 project.

Abstract In this paper we present a combined method, which enables the collaboration of
parallel debugging techniques with simulation and verification of parallel pro-
gram’s coloured Petri-net model in the frame of an integrated development en-
vironment. For parallel applications, written in the hybrid graphical language of
P-GRADE, the coloured Petri-net model can be automatically generated. The
Occurrence Graph (a kind of state-space) is constructed straight away from the
model by the GRSIM simulation engine, which allows examining and querying
the Occurrence Graph for critical information, such as dead-locks, wrong termi-
nation, or the meeting the temporal logic specification. Based on the obtained
information the macrostep-based execution can be steered towards the erroneous
situations assisting to users to improve the quality of their software.

Keywords: parallel programming, debugging, formal methods, Petri-net, temporal logic

1. Introduction to P-GRADE and DIWIDE

84 DISTRIBUTED AND PARALLEL SYSTEMS

lenge is the handling of non-determinism, which may arise in message pass-
ing programs from wildcard receive operations, i.e., receive operations that
non-deterministically accept messages from different communication partners.
The DIWIDE debugger in P-GRADE environment applies the technique of
macrostep [9] and it allows the user to test the application in various timing
conditions.

The idea of macrostep is based upon the concept of collective breakpoints,
which are placed on the inter-process communication primitives in each
GRAPNEL process. The set of executed code regions between two consec-
utive collective breakpoints is called a macrostep. Assuming that sequential
program parts between communication instructions are already tested, we can
handle each sequential code region as an atomic operation. In this way, the sys-
tematic debugging of a parallel program requires to debug the parallel program
by pure macrosteps. The macrostep-by-macrostep execution mode of parallel
programs can be defined as follows. In each macrostep the program runs until
a collective breakpoint is hit thus, the boundaries of the macrosteps are defined
by series of global breakpoint sets, and the consecutive consistent global states
of parallel program are generated automatically.

At replay, the progress of tasks are controlled by the stored collective break-
points and the program is automatically executed again macrostep-by-
macrostep as in the execution phase. The execution path is a graph whose
nodes represent the end of macrosteps (i.e. consistent global states) and the di-
rected arcs indicate the possible macrosteps (i.e. the possible state transitions

Figure 1 The execution tree
(left window) and a part of
the corresponding Occurrence
Graph (right window)

Integration of formal verification and debugging methods in P-GRADE 85

between consecutive global states). The execution tree (see Figure 1, debug-
ging a wrong implementation of producer-consumer problem) is the generali-
sation of the execution path; it can contain all the possible execution paths of a
parallel program assuming that the non-determinism of the current program is
inherited from wildcard message passing communications.

The behaviour of sequential programs can be described with run-time asser-
tions expressed in the language of temporal logic (TL) [5], which is an effective
way of increasing the code’s reliability and thus, the developer’s confidence in
a program’s correct behaviour.

During the extension of the debugging capabilities of P-GRADE, our major
goal was to support the following mechanism (see Figure 2) besides using
temporal logic assertions.

Figure 2. The structure of debugging cycle in P-GRADE

When the user already specified with temporal logic specification the cor-
rectness properties (i.e. the expected program behavior) of GRAPNEL appli-
cation, and this application was compiled successfully, the GRP2cPN tool [4]
generates the coloured Petri-net model of the program. Then, the DIWIDE dis-
tributed debugger in co-operation with TLC engine [5] compares the specifica-
tion to the observed program behaviour macrostep by macrostep, meanwhile
the GRSIM simulator steers the traversing of state-space towards suspicious
situations. If an erroneous situation is detected, the user is able to inspect (with
GUI) either the global state of the application or the state of the individual pro-
cesses as well. Depending on the situation, the user may fix the programming

bug by means of GRED editor, or replay the entire application to get closer to
the origin of the detected erroneous situation.

In this way, two isolated subsystems support in detecting bugs in macrostep
mode. On one hand, the TLC engine and its related modules [5] are able to
deal with the past and present program states during the actual execution of the
program. On the other hand, the coloured Petri-net based modeling and simu-
lation can look forward to the future steering automatically the actual execution
towards the detected errorenous situations without any user’s interaction.

86 DISTRIBUTED AND PARALLEL SYSTEMS

2. Coloured Petri-net and Occurrence Graph

Coloured Petri-nets [3] (CPN) allow system designers and analysts to move
the often difficult task of working directly with real systems into the more
tractable and inexpensive computerised modeling, simulation, and analysis.
CP nets provide an effective dynamic modeling paradigm and a graphical struc-
ture with associated computer language statements. The primary components
of a CP net are data entities, places, markings, transitions, arcs and guards
but the effective CPN modeling requires the ability to distribute a net across
multiple hierarchical pages.

The core of our experimental GRSIM system is Design/CPN toolset [2] that
is equipped by several facilities, such as simulation and analysis capabilities, or
a C-like standardised meta-language (CPN/ML) for defining guards for transi-
tions, compound tokens, etc. It offers two mechanisms for interconnecting net
structure on different pages: substitution transitions and fusion places. In or-
der to add details to a model without losing overview, a (substitution) transition
can be associated with it a separate page of CP net structure, called as a sub-
page. The page that holds the transition is called the superpage. A place that is
connected to a substitution transition on a subpage is called a port, and it will
appear on a superpage as a socket. These two places compose one functional
entity.

The Occurrence Graph (OCC graph) (see Figure 1) of a given CPN model
is a directed graph where each node represents a possible token distribution
(i.e. marking), and each arc represents a possible state transition between two
consecutive token distributions.

3. Transformation steps from GRAPNEL to CPN
The programming model employed in P-GRADE is based on the message

passing paradigm. The programmer can define processes which perform the
computation independently in parallel, and interact only by sending and re-
ceiving messages among themselves. Communication operations always take
place via communication ports which belong to processes and are connected
by channels.

Integration of formal verification and debugging methods in P-GRADE 87

In GRAPNEL programs, there are three distinguished hierarchical design
levels [3], the application level (for definition of processes, ports and channels
ensuring the inter-process communication, see Figure 4), the process level (ap-
plying a control flow graph like technique for the definition of the inner struc-
ture of a process including communication actions such as input, output and
alternative input), and the textual level (define C code for sequential elements
and conditional or loop expressions, or port protocols inside a process).

One of the main challenges during the automatic generation [4][6][7] of a
Petri-net model equivalent to the GRAPNEL application was placing the net
in a hierarchical mode on pages and connecting these components together.

Figure 3. Representation of GRAPNEL process, channel, and port in Petri-net model

Looking into the generation, GRP2cPN kept the logical hierarchy of
GRAPNEL and the application level is described on the highest level super-
page (MainPage, see Figure 3) where a substitution transition connected with
’ReadyToRun’ (by placing a token here it allows the process to execute) and
’Terminated’ (if a token appears here, execution of the process finished) fusion
places stands for every process. Accordingly, a process is represented on a
subpage including the previously mentioned two fusion places.

On the application level a GRAPNEL input type synchronous port [3] is
transformed into three fusion places: ’SenderReady’ (SR); a token on this place
indicates that the partner process is ready for communication, ’ReceiverReady’
(RR) the execution is pending on the communication input action waiting for
the partner, and ’Data’ (D) the place for data to be arrived fusion places. A
GRAPNEL output type port is converted into CPN with other three fusion
places: ’SenderReady’ (SR), ’Data’ (D); data to be sent should be placed here
in the form of a token (its type determined by the port protocol), ’Finished’

DISTRIBUTED AND PARALLEL SYSTEMS

Figure 4. Petri-net representation of the producer-consumer program at application level

(F) whether the execution of sender process may go further fusion places (see
Figure 3).

The communication channel between two processes is converted to CPN
’Channel’ (responsible for the whole communication action to occur), and
’MsgLine’ (may fire if there is a token in ’SenderReady’) simple transitions.
When a process wants to send some data to its partner, first it must send a sign
through the ’MsgLine’ transition to inform the other process about the cur-
rent situation. If the partner is in ’ReceiverReady’ state the data described in
the protocol may be transferred through the ’Channel’ transition. The detailed
description of all transformation steps can be found in [4][7].

88

4. Steering the macrostep debugger based on simulation
The pure Petri-net simulation and analysis of entire program is usually not

feasible due to the combinatorial explosion of program states, and the simu-
lation is based on the model of the program that neglects numerous physical
constraints and real programming bugs. However, the simulation can traverse
the different program states much faster than the real execution by orders of

magnitude, and we can take the advantage of this fast simulation during the
idle periods of macrostep-by-macrostep (or in background mode).

The idea and the goal of this research is that during the execution of each
macrostep the simulation engine has to build up an undiscovered part of the
OCC graph based on the Petri-net model of GRAPNEL program. On the other
hand, using OCC graph analysis the simulation engine can steer the traversing
of Execution Tree and can direct the user’s focus to deadlocks, wrong termina-
tions, and other erroneous situations that may occur in the future. The starting
point of the Petri-net simulation (the first marking from where the simulation
starts) is always related to the current consistent global state, i.e. the current
node of the Execution Tree that is discovered by the macrostep engine using
a depth-first searching strategy [9]. Then the simulation is running concur-
rently with the real program execution until the next macrostep starts. During
the simulation an undiscovered sub-graph of OCC is generated automatically
applying a breadth-first searching strategy since it cannot be predicted easily,
which are the most possible timing conditions (occurring in the future). The
simulator is able to detect some simple classes of erroneous situations that
require low-cost analysis, such as deadlocks or wrong process terminations.
Meanwhile, the analyser is trying to find other erroneous situations (which
require deeper analysis) in the OCC subgraph generated during the previous
macrosteps. When either the simulator tool or the analyser tool detects an er-
roneous situation, the macrostep engine gets a message on the type of error
and the list of timing constraints that lead to the erroneous situation. Thus, the
macrostep engine can steer the program execution towards the erroneous node
of Execution Tree, and the user can uncover the reasons of the error deploying
the distributed debugging facilities of DIWIDE debugger.

In the experimental implementation two scenarios are proposed to get use
of OCC graph; with an automatic verification offered by Design/CPN or with
predefined own custom queries using some built-in general query functions
derived from the users’ TL specification [5].

In the first case independently on the actual debug session, when the OCC
graph for a CP-net is constructed by the simulator, the reporting facilities of
Design/CPN can be utilized to generate a standard report providing informa-
tion about: Statistics (e.g. size of Occurrence Graph), Boundedness Proper-
ties (integer and multi-set bounds for place instances), Home Properties (home
markings), Liveness Properties (dead markings, dead/live transition instances),
Fairness Properties (impartial/fair/just transition instances).

The contents of the report file can be interpreted and translated automati-
cally to GRAPNEL program behaviour properties, especially keeping a close
watch on suspicious situations.

One of the main goals is to detect dead-locks which are equivalent of dead
markings in the OCC graph. For all dead markings (ListDeadMarkings) the

Integration of formal verification and debugging methods in P-GRADE 89

GRSIM calls the ’Reachable’ function that determines whether there exists
an occurrence sequence from the marking of the first node (the actual or ini-
tial marking) to the marking of the second node. It means the search in OCC
graph to find a directed path between these nodes. When this search is finished,
GRSIM gains information about the paths leading to dead-lock situations. The
syntax of the output of our queries (the paths) is defined by Design/CPN [2].
The GRSIM gets use of these paths by converting them to a standard form
(specified by the input/output interface of macrostep debugger) that allows the
user to replay the execution-path from an input file. During this conversion
GRSIM traverses the nodes of the OCC path and also converts the proper states
into the standard file form of execution tree. For this purpose, the path is seg-
mented into series of nodes, which are corresponding to a macrostep, taking
into consideration the transitions, which represent a message passing (partic-
ularly where an alternative input receives a message). Relying on the cross-
reference file, which is generated during the Petri-net model generation, the
segments of OCC path (the reachable coloured Petri-net markings) are trans-
lated back and stored as the nodes of execution tree (reachable states of exe-
cuted program). While the user replays the execution macrostep-by-macrostep
through the path ending in dead-lock searching for the cause of dead-lock, it is
possible to inspect the actual values of variables, the composition of stack, the
instruction pointer in every process with DIWIDE debugger.

The second option is to create custom queries in the meta-language and
built-in functions [2] of Design/CPN derived from the TL specification [5].
The base function to take into consideration is ’SearchNodes’ [2], which tra-
verses the nodes of the OCC graph:

90 DISTRIBUTED AND PARALLEL SYSTEMS

At each node the specified calculation is performed and the results of these
calculations are combined, in the specified way, to form the final result. GRSIM
takes the converted form of the negation of our temporal logic expression that
must be evaluated to true as the ’Pred’ parameter of ’SearchNodes’. The

With the introduced technique the debugging of the parallel application be-
comes more efficient in P-GRADE. The users get easy-to-understand infor-
mation about the program’s possible abnormal behaviour enabling easier bug
detection in the same environment, where the program is under development.

The automated analysis of OCC graphs will give efficient support for debug-
ging P-GRADE programs; one possible scenario is to have the GRSIM engine
run continuously in the background when a new test version of the application
released. In another scenario, the simulation is running simultaneously during
the macrostep-based debugging utilising the idle time, when the user inspects
the current state of the application.

In both cases, whenever a dead-lock, wrong-termination, live-lock or some
other critical events based on the temporal logic specification become pre-
dictable by queries on the OCC graph, GRSIM can warn the tester and give
the exact path(s) of execution tree leading the erroneous state for further in-
spection.

Integration of formal verification and debugging methods in P-GRADE 91

conversion is needed because the introduced TL specification [5] is another
description level of program expected behaviour than the approach applied
in Design/CPN. The ’SearchNodes’ function can be invocated by GRSIM
with the following parameters: SearchNodes(EntireGraph, Pred, NoLimit, fun
Eval(n) = n, [], fun Comb(new,old) = new::old). As the result of this method
GRSIM gets all the places where TL specification fails. From this stage the
task remaining is the same as it was described at the end of the first case.

5. Related works

We followed the active control approach, similarly to other state-of-the-art
debugging frameworks [8][10][11][12]. There are existing approaches [13]
[14][15] to detect erroneous program behaviour based on Petri-net analysis, es-
pecially dead-locks, but these techniques developed mainly theoretically with
less practical results, and not integrated into a high-level unified framework.

Our attempt is an extension of a parallel programming environment provid-
ing automatic support as much as possible preventing the user from the unnec-
essary interactions; such as automatic generation of Petri-net model. However,
the presented experimental debugging framework is strongly tightened to the
GRAPNEL graphical language thus; it cannot be applied directly for real-size
legacy parallel application contrary to MAD environment [8]. Other solutions,
such as FIDDLE [12], address the flexibility of the debugging environment
making an open framework for debugging.

6. Summary, future goals

The introduced toolset has been implemented partially (some components
require manual interactions by the user) and tested with some basic problems,
such as the presented producer-consumer or the dinning philosophers problem.

92 DISTRIBUTED AND PARALLEL SYSTEMS

References

Kacsuk, P., Dozsa, G. and Fadgyas, T.: Designing Parallel Programs by the Graphical Lan-
guage GRAPNEL. Microprocessing and Microprogramming, No. 41 (1996), pp. 625-643

Meta Software Corporation: Desgin/CPN. A Tool Package Supporting the Use of Colored
Petri Nets. Technical Report, Cambridge, MA, USA, 1991

Jensen, K.: Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical Use.
Volume 2, Analysis Methods. Monographs in Theoretical Computer Science, Springer-
Verlag, 1994. ISBN: 3-540-58276-2

Vecsei, B., Lovas, R.: Debugging Method for Parallel Programs Based on Petri-net Repre-
sentation. Proc. of microCAD International Scientific Conference, 18-19 March 2004, pp.
413-420

Kovacs, J., Kusper, G., Lovas, R., Shreiner, W.: Integrating Temporal Assertions into a Par-
allel Debugger. Proc. of the 8th International, Euro-Par Conference, Paderborn, Germany,
pp. 113-120, 2002

Tsiatsoulis, Z., Dozsa, G., Cotronis, Y., Kacsuk, P.: Associating Composition of Petri Net
Specifications with Application Designs in Grade. Proc. of the Seventh Euromicro Work-
shop on Parallel and Distributed Processing, Funchal, Portugal, pp. 204-211, 1999.

Lovas, R., Kacsuk, P., Horvath, A., Horanyi, A.: Application of P-GRADE Development
Environment in Meteorology. Journal of Parallel and Distributed Computing Practices,
Special issue on DAPSYS 2002, Nova, Science Publishers (accepted for publication)

Kranzlmuller, D., Rimnac, A.: Parallel Program Debugging with MAD - A Practical Ap-
proach. Proc. of International Conference on Computational Science 2003, pp. 201-212

Kacsuk, P.: Systematic Macrostep Debugging of Message Passing Parallel Programs. Jour-
nal of Future Generation Computer Systems, Vol. 16, No. 6, pp. 609-624, 2000.

Tarafdar, A., Garg, V.K.: Predicate control for active debugging of distributed programs.
Proc. of IPPS/SPDP-98, pages 763-769, Los Alamitos, March 30-April 3 1998.

Frey, M., Oberhuber, M.: Testing and Debugging Parallel and Distributed Programs with
Temporal Logic Specifications. Proc. of Second Workshop on Parallel and Distributed
Software Engeneering 1997, pages 62-72, Boston, May 1997.

Lourenco, J., Cunha, J.C.: Fiddle: A Flexible Distributed Debugging Architecture. Proc.
of ICCS 2001, San Francisco, CA, USA, 2001, pp. 821-830

Bruneton, E., Pradat-Peyre, J.-F. Automatic verification of concurrent Ada programs.
Ada-Europe’99 International Conference on Reliable Software Technologies (Santander,
Spain), pp. 146–157.

Rondogiannis, P., Cheng, M.H.M: Petri-net-based deadlock analysis of Process Algebra
programs. Science of Computer Programming, 1994. Vol. 23 (1), pp. 55-89.

Dwyer, M.B., Clarke, L.A., Nies, K.A.: A compact petri net representation for concurrent
programs. Technical Report TR 94-46, University of Massachusetts, Amherst, 1994.

Kacsuk, P. et al.: P-GRADE: a Grid Programming Environment. Journal of Grid Comput-
ing Volume 1, Issue 2, 2003, pp. 171-197

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Holger Brunst1, Dieter Kranzlmüller1,2, Wolfgang E. Nagel1

1Center for High Performance Computing
Dresden University of Technology, Germany
{brunst, nagel}@zhr.tu–dresden.de

2 GUP - Institute of Graphics and Parallel Processing
Joh. Kepler University Linz, Austria/Europe
kranzlmueller@gup.jku.at

The constantly increasing need for computing power and memory resources
is a major driving factor of modern computer science. Yet, while standard
computer architectures are getting ever more powerful by following Moore’s
law, the most powerful machines achieve their performance through utilization
of massively parallel processing and cluster technology. This fact is clearly
demonstrated by the Top500 supercomputer list [17], which contains an in-
creasing number of high performance computer systems with hundred or more
processors. At the same time, the continuing interests and application of grid
computing infrastructures [5] push the numbers of interconnected computing
resources even further.

TOOLS FOR SCALABLE PARALLEL PROGRAM
ANALYSIS - VAMPIR NG AND DEWIZ

Abstract Large scale high-performance computing systems pose a tough obstacle for to-
days program analysis tools. Their demands in computational performance and
memory capacity for processing program analysis data exceed the capabilities
of standard workstations and traditional analysis tools. The sophisticated ap-
proaches of Vampir NG (VNG) and the Debugging Wizard DeWiz intend to pro-
vide novel ideas for scalable parallel program analysis. While VNG exploits the
power of cluster architectures for near real-time performance analysis, DeWiz
utilizes distributed computing infrastructures for distinct analysis activities. A
comparison of these two complimentary approaches delivers some promising
ideas for future solutions in the area of parallel and distributed program analy-
sis.

Keywords: scalability, program analysis, performance tuning, debugging, tracing

1. Introduction

Consequently, the characteristics of the underlying computer architecture
must also be addressed by software development tools. A key factor of soft-
ware tools is scalability which means that arbitrary numbers of processes, from
a few up to 10.000 and more, must be supported. This is unfortunately not the
case in todays development environments. Most existing tools support only
small numbers of processes, ranging at best up to 32 or 64.

This paper describes two distinct approaches for parallel and distributed pro-
gram analysis, which try to overcome the above mentioned barrier1. The Vam-
pir Next Generation tool VNG [3] is a completely re-designed version of the
well-known program analysis tool Vampir [13], while the Debugging Wizard
DeWiz is a research prototype based on the technology of the Monitoring And
Debugging environment MAD [12]. Both tools address the issue of scalability
by exploiting parallelism for program analysis tasks, although different ideas
are incorporated in each representative.

The goal of this paper is to provide an overview of these two program anal-
ysis tools, and to highlight the provided functionality for scalable program
analysis. The paper is organized as follows: Section 2 describes the current
situation in the domain of parallel program analysis tools, emphasizing the
limitations of related work and the functionality of VNG’s and DeWiz’s prede-
cessors. Section 3 describes the high performance program analysis tool VNG
in more detail, followed by an overview of DeWiz in Section 4. A comparison
of both approaches as well as a summary of insights is presented in Section 5,
before an outlook on future work in both projects concludes the paper.

94 DISTRIBUTED AND PARALLEL SYSTEMS

2. Tools for Parallel Program Analysis

Many problems of software engineering emerge during the program analysis
phase, which distinguishes between error debugging and performance tuning.
Corresponding tools are used to improve the reliability and efficiency of the
code, and thus the overall quality of the software. To support this in the best
possible way, tool developers have to follow the developments of the hardware
on the one hand and the requests of the users on the other hand, while at the
same time managing the ever increasing complexity of software applications.

As a consequence, there exists a large number of software tools, which offer
more or less sophisticated analysis functionality for different tasks of the pro-
gram analysis phase. Example surveys of program analysis tools are provided
in [15],[6],[9], and [1]. Some of the best known tools for parallel program
analysis are AIMS [18], MAD [12], Paje [4], Paradyn [14], ParaGraph [7],
P-GRADE [10], TAU [16], and Vampir [13]. While each of these tools has a
set of distinguished features and characteristics, their goals are quite compa-
rable: To support users during program analysis activities. Unfortunately, the
support offered by these tools is usually limited in the number of supported

processes2. For example, the ParaGraph tool, often mentioned as one of the
first successful tools in this domain, supports a large number of different dis-
plays. Yet, the number of processes supported in these displays is limited by
16 in most cases, and 64 in some cases.

Interesting enough is one statement of the ParaGraph manual [8], which says
that “ParaGraph’s speed of execution is determined primarily by the drawing
speed of the workstation”. With the advance of computer graphics capabilities
on todays workstations, this is clearly no longer a factor in todays software
tools. The limiting factor today is mainly given by the number of operations
performed on the amount of trace data, including file I/O operations to access
the trace data on the disks.

In order to manage the trace data, each of these tools offers a different ap-
proach. The idea of the on-line program analysis tool Paradyn is to limit the
data gathering during monitoring to the most important regions, and to increase
the monitoring only dynamically when more information is required. Conse-
quently, the amount of data being processed by the analysis tool can be defined
by the user during the execution of the running program. The drawbacks of
this method are, that user interaction is required to obtain the data – which
can be difficult for long-running parallel programs – and that some analysis
techniques are not applicable during on-line monitoring.

A different idea is chosen by MAD and Vampir, the latter being one of the
few commercially available tools for high performance computers. Both tools
offer sophisticated mechanisms, which allow to investigate the trace data on
different levels of abstraction. In MAD, this is achieved with process grouping
and hiding [11], while Vampir provides summary overviews of the program’s
execution [2]. Nevertheless, each of these tools gets close to its limits, when
facing really large amounts of trace data. A typical yardstick is the amount
of available main memory. As long as the trace data fits into the main mem-
ory of the applied workstation, displaying the contents of the trace data and
performing analysis activities is possible. As soon as the trace data exceeds
the available memory, or the trace data has to be moved over long distance
networks, the analysis tasks become increasingly tedious for the human user.

A solution of this problem is parallelization. Only through parallelism, the
amount of memory and the computational performance available and usable
for computation can be increased. We believe that this standard approach of
high-performance computing to cope with large-scale problems must also be
adopted for program analysis tools in order to facilitate tools for todays soft-
ware development projects. The following two sections introduce two distinct
tools, which apply this parallelization approach.

Tools for Scalable Parallel Program Analysis - Vampir NG and DeWiz 95

The distributed architecture of the parallel program analysis tool VNG out-
lined in this section has been newly designed based on the experience gained
from the development of the program analysis tool Vampir. The new architec-
ture uses a distributed approach consisting of a parallel analysis server running
on a segment of a parallel production environment and a visualization client
running on a remote graphics workstation. Both components interact with each
other over the Internet through a socket based network connection. The major
goals of the distributed parallel approach are:

96 DISTRIBUTED AND PARALLEL SYSTEMS

3. High-Performance Program Analysis with VNG

Keep event trace data close to the location where they were created.

Analyze event data in parallel to achieve increased scalability
(# of events ~ 1.000.000.000 and # of streams (processes) ~ 10.000).

Provide fast and easy to use remote performance analysis on end-user
platforms.

1

2

3

VNG consists of two major components: an analysis server (vngd) and a visu-
alization client (vng). Each is supposed to run on a different machine. Figure 1
shows a high-level view of the VNG architecture. Boxes represent modules of
the components whereas arrows indicate the interfaces between the different
modules. The thickness of the arrows gives a rough measure of the data volume
to be transferred over an interface, whereas the length of an arrow represents
the expected latency for that particular link.

In the top right corner of Figure 1 we can see the analysis server, which
runs on a small interactive segment of a parallel machine. The reason for this
is two-fold. Firstly, it allows the analysis server to have closer access to the
trace data generated by an application being traced. Secondly, it allows the
server to execute in parallel. Indeed, the server is a heterogeneous parallel
program, implemented using MPI and pthreads, which uses a master/worker
approach. The workers are responsible for storage and analysis of trace data.
Each of them holds a part of the overall data to be analyzed. The master is
responsible for the communication to the remote clients. He decides how to
distribute analysis requests among the workers. Once the analysis requests are
completed, the master merges the results into a single response package that is
subsequently sent to the client.

The bottom half of Figure 1 depicts a snapshot of the VNG visualization
client which illustrates the timeline of an application run with 768 independent
tasks. The idea is that the client is not supposed to do any time consuming cal-
culations. It is a straightforward sequential GUI implementation with a look-
and-feel very similar to performance analysis tools listed in Section 2. For
visualization purposes, it communicates with the analysis server according to

Tools for Scalable Parallel Program Analysis - Vampir NG and DeWiz 97

Figure 1. VNG Architecture Overview

the user’s preferences and inputs. Multiple clients can connect to the analysis
server at the same time, allowing simultaneous viewing of trace results.

4. Distributed Program Analysis with DeWiz

The Debugging Wizard DeWiz is a program analysis tool comparable to
VNG. However, in contrast to VNG, DeWiz is more a research prototype and
a proof-of-concept than a tool for the high performance computing market.

This major distinction allows DeWiz to apply a more radical approach to
scalable parallel program analysis, and some features of DeWiz can therefore
be seen as the logical extension to VNG. In fact, one of the ideas in the design
of DeWiz was to evaluate the feasibility of using distributed computing infras-
tructures, such as clusters and computational grids, for parallel and distributed
program analysis activities. Therefore, the most important characteristic of
DeWiz is modularity. Each analysis activity is performed by a distinct anal-
ysis module, and the overall analysis strategy is defined by assembling and
interconnecting selected DeWiz modules.

A basic necessity in this approach is the definition of a protocol between the
modules, such that analysis data can be exchanged. Simplified, this module
transports only two different kinds of elements, a variable-sized event struc-
ture and a fixed-sized happened-before relation structure. The event structure

98 DISTRIBUTED AND PARALLEL SYSTEMS

contains information about the event type, the ordering of this event with re-
spect to other events, the executing object (e.g. the process, on which the event
occurred), and the event attributes. The data stored in the event attributes is
defined by the event type and the amount of tracing performed. For instance, a
send event would contain the message length, the message type, and the desti-
nation address as event attributes. The happened-before relation structure con-
tains information about the interconnection of arbitrary events on distinct exe-
cuting objects. For example, a pair of corresponding send and receive events
would generate an additional happened-before relation to express the temporal
and causal relation between these two operations.

The analysis activities of DeWiz are based on these two data structures.
The foundation of this approach is provided by the event graph model, which
describes the execution of a program over the course of time. Consequently, the
DeWiz modules are implementations of event graph operations, which process
the event graph stream provided with the two data structures described above.

An example of DeWiz during operation is shown in Figure 2. The structure
of the applied DeWiz system is given in the top left picture. Each box in the
diagram represents a distinct DeWiz module, and the arcs between the boxes
indicate their interconnection. The same information is provided in the table
of the Controller module on the right bottom side.

On the left hand side of the diagram, monitoring modules are used to pro-
duce the data or read corresponding trace files. This data is forwarded to
analysis modules, which transform the observed data or try to extract useful
information for the analysis activities.

The modules on the right of the diagram display in Figure 2 are used to
present the results of the analysis activities to the user. An example of a dis-
play module is given in the bottom left corner. The space-time view provides a
glimpse of the program analysis activities, with another window given detailed
information about a selected event. In addition to this standard display of pro-
gram execution, DeWiz can also be used to forward events to a series of other
display systems. An example is given with the picture of a mobile phone in the
top right of Figure 2, which highlights the occurrence of a failure (in this case,
a MPI error code).

5. Comparison and Insights
As described above, both tools, VNG and DeWiz, utilize the capabilities of

parallel execution environments to address the possibly huge amounts of trace
data. Based on these descriptions, we can identify the following characteristics
within either or both of these approaches:

Parallelization of analysis activities: Each tool applies concurrent
threads of execution distributed over distinct processing units to perform

Tools for Scalable Parallel Program Analysis - Vampir NG and DeWiz 99

Figure 2. DeWiz Architecture and Analysis Example

partial operations on the trace data. The advantage of this approach is (a)
the increased amount of memory available to store the trace data and (b)
the additional computing power to perform the analysis operations. The
drawback is (comparable to parallel computing applications) the need
for distribution and reduction operations in order to produce total results
from the generated partial results. Yet, as long as enough trace data is
being processed, this additional overhead is acceptable [3].

Modularity and programming paradigm: As a consequence of paral-
lelization, each tool performs the analysis activities in some kind of sub-
units, in DeWiz called modules. The approaches of VNG and DeWiz are
comparable to the two parallelization approaches, SPMD and MPMD. In
VNG, the SPMD (Single Program Multiple Data) paradigm is utilized.
Each VNG worker process performs the same operation on different sets
of data. In DeWiz, the MPMD (Multiple Program Multiple Data) is uti-
lized to provide different modules for distinct analysis activities.

The obvious advantage of VNG is the ease of use of cluster architec-
tures, where the same code is loaded and executed on all processes. On
contrary, the initialization process of DeWiz is much more complicated,
requiring explicit instructions to load specific modules on specific hard-
ware. However, once the modules are loaded, DeWiz offers more flexi-
bility in terms of utilized hardware resources.

100 DISTRIBUTED AND PARALLEL SYSTEMS

Data transportation: Another major distinction between VNG and
DeWiz is the transportation of data between the distribution processing
units. On the one hand, the approach used in VNG facilitates paral-
lel I/O capabilities, which are typically available in todays cluster envi-
ronments. On the other hand, DeWiz requires a dedicated protocol to
exchange data over communication links, and may thus be more likely
subject to communication failures.

Abstraction levels: Besides processing the data, an important factor of
program analysis is the presentation of the analysis results to the user.
Especially with large amounts of trace data, users are often overwhelmed
and confused, if corresponding functionality is missing. Both, VNG and
DeWiz, provide dedicated features for managing the trace data on differ-
ent, hierarchical levels of abstraction, such that users are able to navigate
through the trace data using overview and summary information when-
ever needed.

Analysis goals: A historic distinction between VNG and DeWiz is their
area of application. While both tools can be used for arbitrary analy-
sis activities, VNG is more focused on the performance tuning aspects,
while DeWiz originally started as an error debugging tool. However, as
clearly shown by the functionality of both tools, these areas are more
and more merging, leading to integrated tools for the users.

Target of program analysis: In terms of the targets for program analy-
sis, both tools should be capable of addressing arbitrary codes, which
is demonstrated by the fact, that message-passing (e.g. MPI) as well as
shared-memory programs (e.g. OpenMP) are supported. The key to uni-
versality in this area is the program model utilized by the two analysis
tools.

Connection to monitoring: While this paper does not address the prob-
lems of scalable program monitoring, there are some aspects of moni-
toring that obviously influence the analysis activities. For example, the
abstraction levels described above would be best supported by a hierar-
chical trace format, which is unfortunately not available today. At the
same time it is interesting to see, how each of the tools accesses the ob-
servation data. Usually, on-line and post-mortem analysis activities are
distinguished, and both VNG and DeWiz are capable of supporting both
types of connections to the monitoring system.

6. Summary and Future Work

The problem of large-scale parallel and distributed program analysis is ever
more immanent with todays availability of large-scale and possibly distributed

Tools for Scalable Parallel Program Analysis - Vampir NG and DeWiz 101

computing resources. Consequently, performing program analysis activities
requires dedicated functionality from software tools, and parallelism is the
only choice, if applications on large-scale computing infrastructures are be-
ing investigated. In fact parallelization is the key to scalable program analysis,
as shown by the two example tools VNG and DeWiz.

The implementations of VNG and DeWiz have offered interesting insights
into the problem area of large-scale analysis activities. Many open questions
remain for the future, e.g. the issue of scalable monitoring and – associated
with it – the development of a suitable trace file format. Additionally, some
more advanced analysis features are currently being integrated in VNG and
DeWiz, including sophisticated pattern matching of program execution traces.
Finally, the increasing availability of grid infrastructures represents an interest-
ing area to deploy program analysis activities, and first ideas to utilize the grid
for VNG and DeWiz are currently being investigated.

Acknowledgments

The VNG tool developed at Dresden University of Technology and the
DeWiz tool developed at Joh. Kepler University Linz are the results of sev-
eral years of research and software engineering, supported by many of our
colleagues to whom we are most grateful.

Notes

1. Please note, that we only address the program analysis tasks, assuming that a monitoring tool is
capable of gathering and storing the monitoring data. The latter is a difficult enough challenge by itself.

2. With processes, we mean the more general term representing executing entities such as threads,
tasks, and actual processes, e.g. within the context of MPI.

References

Browne, S., Dongarra, J.J., London, K., “Review of Performance Anal-
ysis Tools for MPI Parallel Programs”, Technical Report, NHSE, Com-
puter. Science Department, University of Tennessee, Knoxville, TN, USA,

(1999).

Large Scale Computing: The Scalable VAMPIR approach”, Proc. ICCS 2001, Intl. Con-
ference on Computational Science, Springer-Verlag, LNCS, Vol. 2074, San Francisco,
CA, USA (May 2001).

Brunst, H., Nagel, W.E., Malony, A.D., “A Distributed Performance Analysis Architec-
ture for Clusters”, IEEE International Conference on Cluster Computing, Cluster 2003,
IEEE Computer Society, Hong Kong, China, pp. 73-81 (December 2003).

Chassin de Kergommeaux, J., Stein. B., “Paje: An Extensible Environment for Visualiz-
ing Multi-Threaded Program Executions”, Proc. Euro-Par 2000, Springer-Verlag, LNCS,
Vol. 1900, Munich, Germany, pp. 133-144 (2000).

[1]

[2]

[3]

[4]

Brunst, H., Hoppe, H.Ch., Nagel, W.E., Winkler, M., “Performance Optimization for

102 DISTRIBUTED AND PARALLEL SYSTEMS

Foster, I., Kesselman, C., “The Grid: Blueprint for a New Computing Infrastructure”,
Morgan-Kaufman (1999).

Gu, W., Vetter, J., Schwan, K., “An Annotated Bibliography of Interactive Program Steer-
ing”, ACM SIGPLAN Notices, Vol. 29, No. 9, pp. 140-148 (September 1994).

Heath, M.T., Etheridge, J.A., “Visualizing the Performance of Parallel Programs”, IEEE
Software, Vol. 8, No. 5, pp. 29-39 (September 1991).

Heath, M.T., Etheridge, J.A., “ParaGraph: A Tool for Visualizing the Perfor-
mance of Parallel Programs”, Technical Report, Oak Ridge National Laboratory,
http://www.netlib.org/paragraph/ (1994).

Hondroudakis, A., “Performance Analysis Tools for Parallel Programs”, Version 1.0.1,
Edinburgh Parallel Computing Centre, The University of Edinburgh, available at:
http://www.epcc.ed.ac.uk/epcc-tec/documents.html (July 1995).

Kacsuk, P., Cunha, J.C., Dozsa, G., Lourenco, J., Fadgyas, T., Antao, T., “A Graphical
Development and Debugging Environment for Parallel Programs”, Journal of Parallel
Computing, Haring, G., Kacsuk, P., Kotsis, G., (Eds.), “Distributed and Parallel Systems:
Environments and Tools”, Elsevier Publisher, Vol. 22, No. 13, pp. 1699-1701 (1997).

Kranzlmller, D., Grabner, S., Volkert, J., “Event Graph Visualization for Debugging
Large Applications”, Proc. SPDT’96, ACM SIGMETRICS Symposium on Parallel and
Distributed Tools, Philadelphia, PA, USA, pp. 108-117 (May 1996).

Kranzlmller, D., Grabner, S., Volkert, J., “Debugging with the MAD Environment”, Jour-
nal of Parallel Computing, Dongarra, J.J., Tourancheau, B., (Eds.), “Environments and
Tools for Parallel Scientific Computing III”, Elsevier Publisher, Vol. 23, No. 1-2, pp.
199-217 (Apr. 1997).

Nagel, W.E., Arnold, A., Weber, M., Hoppe, H.-C., Solchenbach, K., “VAMPIR: Visual-
ization and Analysis of MPI Resources”, Supercomputer 63, Volume XII, Number 1, pp.
69-80 (Jan. 1996).

Miller, B.P., Callaghan, M.D., Cargille, J.M., Hollingsworth, J.K., Irvin, R.B., Karavanic,
K.L., Kunchithapadam, K., Newhall, T., “The Paradyn Parallel Performance Measure-
ment Tool”, IEEE Computer, Vol. 28, No. 11, pp. 37-46 (November 1995).

Pancake, C.M., Netzer, R.H.B., “A Bibliography of Parallel Debuggers, 1993 Edition”,
Proc. of the 3rd ACM/ONR Workshop on Parallel and Distributed Debugging, San Diego,
CA, USA (May 1993), reprinted in: ACM SIGPLAN Notices, Vol. 28, No. 12, pp. 169-
186 (Dec. 1993).

Shende, S., Cuny, J., Hansen, L., Kundu, J., McLaugry, S., Wolf, O., “Event and State-
Based Debugging in TAU: A Prototype”, Proc. SPDT’96, ACM SIGMETRICS Sympo-
sium on Parallel and Distributed Tools, Philadelphia, PA, USA, pp. 21-30 (May 1996).

TOP 500 Supercomputer Sites, http://www.top500.org/ (2004).

Yan, J.C., H.H. Jin, H.H., Schmidt, M.A., “Performance Data Gathering and
Representation from Fixed-Size Statistical Data”, Technical Report NAS-98-003,
http://www.nas.nasa.gov/Research/Reports/Techreports/1998/
nas-98-003. pdf, NAS System Division, NASA Ames Research Center, February 1999.

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

PROCESS MIGRATION IN CLUSTERS AND
CLUSTER GRIDS *

József Kovács
MTA SZTAKI
Parallel and Distributed Systems Laboratory
H1518 Budapest, P.O.Box 63 Hungary

smith@sztaki.hu

The paper describes two working modes of the parallel program checkpointing
mechanism of P-GRADE and its potential application in the nationwide Hun-
garian ClusterGrid (CG) project. The first generation architecture of ClusterGrid
enables the migration of parallel processes among friendly Condor pools. In the
second generation CG Condor flocking is disabled, so a new technique is intro-
duced to somehow interrupt the whole parallel application and take it out of the
Condor scheduler with checkpoint files. The latter mechanism enables a parallel
application to be completely removed from the Condor pool after checkpointing
and to be resumed under another non-friendly Condor pool after resubmission.
The checkpointing mechanism can automatically (without user interaction) sup-
port generic PVM programs created by the P-GRADE Grid programming envi-
ronment.

message-passing parallel programs, graphical programming environment, check-
pointing, migration, cluster, grid, pvm, condor

Abstract

Keywords:

1. Introduction
Process migration in distributed systems is a special event when a process

running on a resource is redeployed on another one in a way that the migration
does not cause any change in the process execution. In order to provide this
capability special techniques are necessary to save the whole memory image of
the target process and to reconstruct it. This technique is called checkpointing.
During checkpointing a tool suspends the execution of the process, collects all
those internal status information necessary for resumption and terminates the

* The work presented in this paper has been supported by the Hungarian Chemistrygrid OMFB-00580/2003
project, the Hungarian Supergrid OMFB-00728/2002 project, the Hungarian IHM 4671/1/2003 project and
the Hungarian Research Fund No. T042459.

104 DISTRIBUTED AND PARALLEL SYSTEMS

process. Later a new process is created and all the collected information is
restored for the process to continue its execution without any modification.

Such migration mechanism can be advantageously used in several scenarios
like load balancing, utilisation of free resources (high throughput computing),
fault tolerant execution or resource requirement driven migration. When using
a job scheduler most of the above cases can only be supported by some external
checkpointing mechanism, since automatic checkpointing of parallel jobs is
rarely solved within a job scheduler. For example, the Condor [11] system
can only guarantee the automatic checkpointing of sequential jobs but only
provides user level support for fault-tolerant execution of Master/Worker PVM
jobs.

When building a huge ClusterGrid we should aim at making the Grid [4]
capable of scheduling parallel applications effectively, otherwise these appli-
cations will fail due to the dynamic behaviour of the execution environment.

Beyond the execution of a parallel program another important aspect of a
Grid end-user - among others - is the creation of a Grid application. Unfortu-
nately, there are no widely accepted graphical tools for high-level development
of parallel applications. This is exactly the aim of the P-GRADE [9] (Paral-
lel Grid Run-time and Application Development Environment) Grid program-
ming environment that has been developed by MTA SZTAKI. P-GRADE cur-
rently generates [3] either PVM or MPI code from the same graphical notation
according to the users’ needs.

In this paper we show how an external checkpointing mechanism can be
plugged into a scheduler by our tool without requiring any changes to the
scheduler, and making a huge nationwide ClusterGrid be capable of execut-
ing parallel application with full support of automatic checkpointing. The pa-
per details two working modes: migration among friendly (flocked) Condor
pools and migration among non-friendly (independent) condor pools. Both are
related to the different layouts of the evolving Hungarian ClusterGrid project.

2. The Hungarian ClusterGrid Project

The ClusterGrid project was started in the spring of 2002, when the Hun-
garian Ministry of Education initiated a procurement project which aimed at
equipping most of the Hungarian universities, high-schools and public libraries
with high capacity computational resources.

The ClusterGrid project aims to integrate the Intel processor based PCs into
a single, large, countrywide interconnected set of clusters. The PCs are pro-
vided by the participating Hungarian institutes, the central infrastructure and
the coordination is provided by NIIF/HUNGARNET, the operator of the Hun-
garian Academic Network. Every contributor uses their PCs for their own
purposes during the official work hours, such as educational or office-like pur-

Process Migration In Clusters and Cluster Grids 105

poses, and offers the infrastructure for high-throughput computation whenever
they do not use them for other purposes, i.e. during the night hours and the un-
occupied week-ends. The combined use of “day-shift” (i.e. individual mode)
and “night-shift” (i.e. grid mode) enables us to utilise CPU cycles (which
would have been lost anyway) to provide firm computational infrastructure
to the national research community.

By the end of summer 2002, 99 PC-labs had been installed throughout the
country; each lab consisting of 20 PCs, a single server and a firewall machine.
The resources of PCs in each lab were accumulated by the Condor software and
the pools were flocked to each other creating a huge Condor pool containing
2000 machines. A Virtual Private Network was built connecting all the nodes
and a single entry point was defined to submit applications. This period is
referred as 1st generation architecture of ClusterGrid.

From September 2003, a new grid layout has been established referred to as
2nd generation architecture. It was changed to support decentralised submis-
sion of applications and to add an intelligent brokering layer above the condor
pools that are not flocked to each other any more.

Currently both sequential jobs and parallel jobs parallelized by Parallel Vir-
tual Machines (PVM) library are supported. Automatic checkpointing works
for statically linked sequential jobs only, thus no parallel jobs can run longer
than 10 hours (the duration of a night-shift operation) or 60 hours (the duration
of a week- end operation). User-level check-pointing can be applied to both
sequential and parallel jobs without any execution time restriction. For more
detailed information, please refer to [12]

3. The P-GRADE software development tool

P-GRADE [5] provides a complete, integrated, graphical solution (including
design, debugging, testing, monitoring, load balancing, checkpointig, perfor-
mance analysis and visualization) for development and execution of parallel
applications on clusters, Grid systems and supercomputers. The high-level
graphical environment of P-GRADE reduces the need for programming com-
petence thus, non-professional programmers can use the same environment
on traditional supercomputers, clusters, or Grid solutions. To overcome the
execution time limitation for parallel jobs we introduced a new checkpointing
technique in P- GRADE where different execution modes can be distinguished.

In interactive mode the application is started by P-GRADE directly, which
means it logs into a cluster, prepares the execution environment, starts a PVM
or MPI application and takes care of the program. In this case it is possible to
use the checkpoint system with a load balancer attached to it.

In job mode the execution of the application is supervised by a job scheduler
like Condor or SGE after submission. When using the Condor job scheduler P-

106 DISTRIBUTED AND PARALLEL SYSTEMS

GRADE is able to integrate automatic checkpointing capability into the appli-
cation. In this case the parallel application can be migrated by Condor among
the nodes of its pool or it is even possible to remove the job from the queue af-
ter checkpointing and transfer the checkpoint files representing the interrupted
state to another pool and continue the execution after it is resubmitted to the
new pool.

To enable one of the execution modes mentioned above the user only needs
to make some changes in the “Application Settings” dialog of P-GRADE and
submit the application. No changes required in the application code.

4. Migration in the 1st generation ClusterGrid

P-GRADE compiler generates [3] executables which contain the code of
the client processes defined by the user and an extra process, called the grapnel
server which is coordinating the run-time set-up of the application. The client
processes contain the user code, the message passing primitives and the so
called grapnel (GRAPhical NEt Language) library that manages logical con-
nections among them. To set-up the application first the Grapnel Server (GS)
(see Figure 1 comes to life and then it creates the client processes containing
the user computation.

Before starting the execution of the application, an instance of the Check-
point Server (CS) is started in order to transfer checkpoint files to/from the
dynamic checkpoint libraries dynamically linked to the application. Each pro-
cess of the application automatically loads the checkpoint library at start-up
that checks the existence of a previous checkpoint file of the process by con-
necting to the Checkpoint Server. If it finds a checkpoint file for the process,
resumption of the process is automatically initiated by restoring the process
image from the checkpoint file otherwise the process is started from the begin-
ning. To provide an application-wide consistent checkpointing, the commu-
nication primitives are modified to perform the necessary protocol among the
user processes and among the user processes and the server.

In a Condor based Grid, like the 1st generation ClusterGrid, the P-GRADE
checkpoint system is prepared to the dynamic behaviour of the PVM virtual
machine organised by Condor. Under Condor the PVM runtime environment is
slightly modified by Condor developers in order to give fault-tolerant execution
support for Master-Worker (MW) type parallel applications.

The basic principle of the fault-tolerant MW type execution in Condor is
that the Master process spawns workers to perform the calculation and it con-
tinuously monitors whether the workers successfully finish their calculation.
In case of a failure the Master process simply spawns new workers passing the
unfinished work to them. The situation when a worker fails to finish its cal-
culation usually comes from the fact that Condor removes the worker because

Process Migration In Clusters and Cluster Grids 107

Figure 1. Migration phases under Condor.

the executor node is no longer available. This action is called vacation of the
machine containing the PVM process. In this case the master node receives a
notification message indicating that a particular node has been removed from
the PVM machine. As an answer the Master process tries to add new PVM
host(s) to the virtual machine with the help of Condor and gets notified when
it is done successfully. Afterwards it spawns new worker(s).

For running a P-GRADE application, the application continuously requires
the minimum amount of nodes to execute the processes. Whenever the number
of the nodes decreases below the minimum, the Grapnel Server (GS) tries to
extend the number of PVM machines above the critical level. It means that the
GS process works exactly the same way as the Master process in the Condor
MW system.

Whenever a process is to be killed (e.g. because its node is being vacated),
an application-wide checkpoint is performed and the exited process is resumed
on another node. The application-wide checkpointing is driven by the GS,

108 DISTRIBUTED AND PARALLEL SYSTEMS

but can be initiated by any user process (A, B, C) which detects that Condor
tries to kill it. After the notification the GS sends a checkpoint signal and
message to every user process, which results in the user processes to make a
coordinated checkpoint. It is started with a message synchronisation among
the processes and finishes with saving the memory image of the individual
processes. Now, that the application is saved, terminating processes exit to be
resumed on another node.

At this point the GS waits for the decision of Condor that tries to find un-
derloaded nodes either in the home Condor pool of the submit machine or in
a friendly Condor pool. The resume phase is performed only when the PVM
master process (GS) receives a notification from Condor about new host(s)
connected to the PVM virtual machine. For every new node a process is
spawned and resumed from the stored checkpoint file. When every terminated
process is resumed on a new node allocated by Condor, the application can
continue its execution.

This working mode enables the PVM application to continuously adapt it-
self to the changing PVM virtual machine by migrating processes from the
machines being vacated to some new ones that have just been added. Figure 1
shows the main steps of the migration between friendly Condor pools. This
working mode is fully compatible with the first generation architecture of the
nationwide Hungarian ClusterGrid project.

5. Migration in the 2nd generation ClusterGrid

Notice that in the previous solution the Application Server (GS) and Check-
point Server (CS) processes must remain in the submit machine during the
whole execution even if every user process (A,B,C in Figure 1) of the applica-
tion migrates to another pool through flocking. Since flocking is not used in
the 2nd generation ClusterGrid, the application must be checkpointed and re-
moved from the pool. Then a broker allocates a new pool, transfers checkpoint
files and resubmits the job. Then, the application should be able to resume its
execution.

In order to checkpoint the whole application, the checkpoint phase is initi-
ated by the broker (part of the ClusterGrid architecture) by simply removing
the application from the pool. In this case the application server detects to be
killed, it performs a checkpoint of each process of the application, shuts down
all user processes, checkpoints itself and exits. This phase is similar to the case
when all the processes are prepared for migration but completes with an addi-
tional server self-checkpointing and termination. As a preparation the server
creates a file status table in its memory to memorise the open files used by the
application and also stores the status of each user process.

Process Migration In Clusters and Cluster Grids 109

When the broker successfully allocates a new pool it transfers the exe-
cutable, checkpoint and data or parameter files and resubmits the application.
When resubmitted, the server process first comes to life and the checkpoint
library linked to it automatically checks for proper checkpoint file by query-
ing the checkpoint server. The address of the checkpoint server is passed by
parameters (or optionally can be taken from environment variable). When it is
found, the server (GS) resumes, data files are reopened based on the informa-
tion stored in the file status table and finally every user process is re-spawned,
the application is rebuilt.

This solution enables the parallel application to be migrated among different
sites and not limited to be executed under the same condor pool during its
whole lifetime. Details of the checkponting mechanism can be found in [6].

6. Performance and Related Work
Regarding the performance of checkpointing overall time spent for migra-

tion are checkpoint writing, reading, allocation of new resources and some
coordination overhead. The overall time a complete migration of a process
takes also includes the response time of the resource scheduling system e.g.
while Condor vacates a machine, the matchmaking mechanism finds a new re-
source, allocates it, initialises pvmd and notifies the application. Finally, the
cost of message synchronisation and costs used for coordination processing are
negligible, less than one percent of the overall migration time.

Condor [8], MPVM [1], DPVM [2], Fail-Safe PVM [7], CoCheck [10] are
other software systems supporting adaptive parallel application execution in-
cluding checkpointing and migration facility. The main drawbacks of these
systems are that they are modifying PVM, build complex execution system,
require special support, need root privileges, require predefined topology, need
operating system support, etc. Contrary to these systems our solution makes
parallel applications be capable of being checkpointed, migrated or executed
in a fault tolerant way on specific level and we do not require any support from
execution environment or PVM.

7. Conclusion
In this paper a checkpointing mechanism has been introduced which enables

parallel applications to be migrated partially among friendly Condor pools in
the 1st generation Hungarian ClusterGrid and to be migrated among indepen-
dent (non- friendly) Condor pools in the 2nd generation ClusterGrid.

As a consequence, the P-GRADE checkpoint system can guarantee the exe-
cution of any PVM job in a Condor-based Grid system like ClusterGrid. Notice
that the Condor system can only guarantee the execution of sequential jobs and
special Master/Worker PVM jobs. In case of generic PVM jobs Condor cannot

110 DISTRIBUTED AND PARALLEL SYSTEMS

provide checkpointing. Therefore, the developed checkpointing mechanism
significantly extends the robustness of any Condor-based Grid system.

An essential highlight of this checkpointing system is that the checkpoint in-
formation can be transferred among condor pools, while native condor check-
pointer is not able provide this capability, so non-flocked condor pools cannot
exchange checkpointed applications not even with help of an external module.

The migration facility presented in this paper does not even need any modi-
fication either in the message-passing layer or in the scheduling and execution
system. In the current solution the checkpointing mechanism is an integrated
part of P-GRADE, so the current system only supports parallel applications
created by the P-GRADE environment. In the future, roll-back mechanism
is going to be integrated to the current solution to support high-level fault-
tolerance and MPI extension as well.

References
J. Casas, D. Clark, R. Konuru, S. Otto, R. Prouty, and J. Walpole, “MPVM: A Migration
Transparent Version of PVM”, Technical Report CSE-95-002, 1, 1995

L. Dikken, F. van der Linden, J.J.J. Vesseur, and P.M.A. Sloot, “DynamicPVM: Dynamic
Load Balancing on Parallel Systems”, In W.Gentzsch and U. Harms, editors, Lecture notes
in computer sciences 797, High Performance Computing and Networking, volume Pro-
ceedings Volume II, Networking and Tools, pages 273-277, Munich, Germany, April 1994.
Springer Verlag

D. Drótos, G. Dózsa, and P. Kacsuk, “GRAPNEL to C Translation in the GRADE Environ-
ment”, Parallel Program Development for Cluster Comp.Methodology,Tools and Integrated
Environments, Nova Science Publishers, Inc. pp. 249-263, 2001

I. Foster, C. Kesselman, S. Tuecke, “The Anatomy of the Grid.” Enabling Scalable Virtual
Organizations, Intern. Journal of Supercomputer Applications, 15(3), 2001

P. Kacsuk, “Visual Parallel Programming on SGI Machines”, Invited paper, Proc. of the
SGI Users Conference, Krakow, Poland, pp. 37-56, 2000

J. Kovács and P. Kacsuk, “Server Based Migration of Parallel Applications”, Proc. of DAP-
SYS’2002, Linz, pp. 30-37, 2002

J. Leon, A. L. Fisher, and P. Steenkiste, “Fail-safe PVM: a portable package for distributed
programming with transparent recovery”. CMU-CS-93-124. February, 1993

M. Litzkow, T. Tannenbaum, J. Basney, and M. Livny, “Checkpoint and Migration of UNIX
Processes in the Condor Distributed Processing System”, Technical Report # 1346, Com-
puter Sciences Department, University of Wisconsin, April 1997

P-GRADE Parallel Grid Run-time and Application Development Environment:
http://www.lpds.sztaki.hu/pgrade

G. Stellner, “Consistent Checkpoints of PVM Applications”, In Proc. 1st Euro. PVM Users
Group Meeting, 1994

D. Thain, T. Tannenbaum, and M. Livny, “Condor and the Grid”, in Fran Berman, Anthony
J.G. Hey, Geoffrey Fox, editors, Grid Computing: Making The Global Infrastructure a
Reality, John Wiley, 2003

http://www.clustergrid.iif.hu

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

IV

P-GRADE

This page intentionally left blank

GRAPHICAL DESIGN OF PARALLEL
PROGRAMS WITH CONTROL BASED ON
GLOBAL APPLICATION STATES USING AN
EXTENDED P-GRADE SYSTEM

M. Tudruj*,** J. Borkowski* D. Kopanski*
*Polish-Japanese Institute of Information Technology, ul. Koszykowa 86, 02-008 Warsaw,
Poland
**Institute of Computer Science of the Polish Academy of Sciences, ul. Ordona 21, 01-237
Warsaw, Poland
{tudruj, janb, damian}@pjwstk.edu.pl

An extension of the graphical parallel program design system P-GRADE
towards specification of program execution control based on global
application state monitoring is presented. De-coupled structured specifications
of computational and control elements of parallel programs are assumed.
Special synchronizer processes collect process state messages supplied with
time interval timestamps and construct strongly consistent application states.
Control predicates are evaluated on these states by synchronizers. As a result,
control signals can be sent to application processes to stimulate desired
reactions to the predicates. The signals can cause asynchronous computation
activation or cancellation. Implementation of a parallel program of Traveling
Salesman Problem (TSP) solved by branch-and-bound (B&B) method is
described to illustrate properties of the new system.

parallel program design, graphical support tools, synchronization-based
control, global program states.

Abstract:

Key words:

1. INTRODUCTION

Parallel program execution control defined with the use of high level
predicates based on global application states is an emerging method that

114 DISTRIBUTED AND PARALLEL SYSTEMS

opens new design possibilities in programs for distributed memory systems.
The essential concept is here that the control predicates enable influencing
the behavior of programs by means of generalized synchronization of global
states of processes located in separate parallel processors [TK98, JB00]. It is
different to what exists in the standard practice, where the control is always
derived from a local state inside a processor. P-GRADE [KDF97] allows
users to specify graphically parallel processes, their interconnections and the
internal structure of each process. A programmer specifies a program by the
use of a graphical user interface and does not need to know any technical
details of communication libraries. Inter-process synchronization in standard
P-GRADE is based on message passing facilities including a barrier. We
have extended the existing P-GRADE environment with global level
synchronization and control mechanisms. The control is de-coupled from
computational code of a program. Such a methodology improves standard
methods where the code responsible for the synchronization and control is
usually scattered in the program code in an unstructured way.

The paper is composed of 2 main parts. The first part describes the
extension of the P-GRADE system. The second part describes a TSP parallel
program implementation for the new GRADE system.

2. PS-GRADE - SYNCHRONIZATION -ORIENTED
P-GRADE SYSTEM

The extended P-GRADE environment incorporates new mechanisms
based on high-level synchronization and communication methods. A parallel
program control environment includes the global control level and the
process level. The global control level is based on special globally accessible
processes called synchronizers. They are responsible for monitoring
execution states of parallel processes in application programs, computing
predicates on these states and issuing control signals depending on the
predicate values, to application processes. A global application state is a
vector of local states of all constituent processes A global state is strongly
consistent if it contains pair wise concurrent local states, according to the
chosen precedence relation. The process level describes how application
processes report their states to synchronizers and how the processes react to
control signals coming from synchronizers. We suggest to reduce the use of
passive waiting in program control and to keep programs doing some useful
computations potentially all the time. The computations can be suspended
temporally if there are more important actions to be performed. When a
synchronization condition is met, selected processes are signaled. The
signals can trigger execution of dedicated new computations, which are

Graphical Design of Parallel Programs with Control Based on Global
Application States Using an Extended P-GRADE System

115

integral parts of the whole application. Alternatively, computations can be
cancelled on signals, if for some reason there is no point in continuing them.
In distributed systems, inter-process communication is generally subject to
various delays, so, state messages can arrive to synchronizers in
unpredictable order. Therefore, the state messages are supplied with
timestamps based on partially synchronized processor clocks. Based on the
timestamps, the synchronizers construct precedence relation on process
states and determine global or regional (partial) strongly consistent states
(SCS) [JB04, MN91, S00], before control predicates are evaluated.
Evaluation of a predicate starts when the synchronizer finds a new pertinent
SCS. The clock synchronization is based on the Network Time Protocol
[RFC]. Soon, hardware counters controlled from a global clock and the RBS
protocol [EGE02] will be used with clock tolerance of few microseconds.

Two components of the synchronization-based program control - global
control level and process level are directly mapped onto GRADE application
window and process windows, respectively. There are 3 new features
introduced to GRADE in the application window: synchronizer processes,
synchronizer input ports with potentially many processes connected to each
port and synchronizer output ports with potentially many processes
connected to each port. By clicking on a synchronizer icon, a synchronizer
condition window is opened. It enables specification of all synchronizer’s
conditions (generalized predicates) as control flow diagrams supported by
code in C.

To design a parallel program with execution control based on predicates
computed on global application states, we should prepare an overall image
of the application program. We have to decompose the program into a set of
parallel application processes and a set of synchronizers. In the application
processes, we should identify the states, which will be monitored by
synchronizers and used for global program control. We have to determine
how state representation will be sent to synchronizers. Then, we define the
regions in the program code, which are sensitive to synchronization signals
sent back from synchronizers. Next, we prepare the reactions to
synchronization signals, which are received. Having all this, we start editing
the code (the block and flow diagrams) using the graphical design tool.

3. EXAMPLE: A TSP SOLVED BY B&B METHOD

A parallel program design for a Travelling Salesman Problem solved by a
branch and bound method [WA99] will illustrate the PS-GRADE system.
Execution of the algorithm is based on a set of worker parallel processes,

116 DISTRIBUTED AND PARALLEL SYSTEMS

which receive search tasks from a central coordinator process. In this
algorithm some state tables are used to monitor current load of each worker
process (how much work is left), the upper bound of the sub-problem being
solved by each search (worker) process and the best solution found so far.
Two synchronization conditions are checked: is there a worker process out
of work and are there worker processes solving sub-problems, which are not
prospective any more (i.e. their upper bounds are below the best solution
found). The first condition is responsible for parallel search task farming
with dynamic load balancing. The second condition is responsible for
canceling solving non-productive sub-problems.

The new GRADE windows for the TSP program are shown below. Fig 1
presents the application layer window. The program consists of a set of
worker processes workerXj, workerYj, workerZj and four synchronizers
Synchi. The synchronizers are mutually connected in a hierarchical structure
with the Synch0 at the top. Synch0 is connected with each lower level
synchronizer by one state channel and one signal channel. Workers are
connected to synchronizers using three channels: two state channels from

Figure 1. Application window of TSP program

Graphical Design of Parallel Programs with Control Based on Global
Application States Using an Extended P-GRADE System

117

workers to the synchronizers and one reverse channel with two types of
signals (new search data signal and new MinDist signal). The synchronizers
Synch 1, ..., Synch3 react to state messages received from workers and
signals from Synch0. They have some pools of search data previously sent to
them by the Synch0. If they can satisfy the data requests, they send some
new search data to workers. Otherwise, they send new search data pool
requests states to Synch0. In response, Synch0 can send new search data to
lower level synchronizer to be dispatched among requesting workers. In
response to received LocMinDist states, Synch 1, ..., Synch3 compare the
received values with the best results they know, dispatch the better-than-
known results among their local workers and inform Synch0 if a better result
than known to it has been found. Synch0 evaluates the best-known result and
dispatches it to lower level synchronizers for further parallel dispatching to
workers.

The Synch0 condition window is shown in Fig. 2. It shows condition
(predicate) blocks MinDist, DataRequesti, which are used to control program
behavior. A condition flow graph can be edited after clicking on the
condition block. Each condition has input state ports and output ports for
sending signals to processes. Conditions DataRequesti are defined on
regional states Dreqi, respectively and MinDist is based on Nmini states .
DReqi correspond to new search data pool requests from lower level
synchronizers and NMini, correspond to current minimal search results from
Synch1, Synch2, Synch3. The conditions input/output ports are connected to
external synchronizer ports using special assignment windows. Each lower
level synchronizer has 2 conditions: DataRequest triggered by any of
regional states: Dreq or Dsend, and MinDist, triggered by any of two
regional states: NMin and Emin. NMin corresponds to a MinDist result for
local workers. Emin corresponds to MinDist for all workers.

Figure 2 Condition window of Synch0

118 DISTRIBUTED AND PARALLEL SYSTEMS

Figure 3. Control flow diagram of Synch0 condition MinDist (left) and control flow diagram
of Synch1 conditions MinDist (right)

Fig. 3 shows the flow diagrams of MinDist conditions of Synch0 and
Synch1. In condition handling, state vectors are first read, the data associated
with state messages are tested, predicates are evaluated and control signal
decisions are taken and executed. Based on received Nmin states a local best
result SminDist for all workers of Synch1 is computed. If the new SminDist
is better the current condition’s best MinDist, new MinDist is associated
with a signal sent to all the workers of Synch1 and also it is sent to Synch0
in a state message Nmin1. In response to Emin signal received from Synch0,
the new SminDist is computed and distributed to all local workers of Synch1
if it is better than the best locally known.

Fig 4 shows the control flow diagram of a worker process. This diagram
consists of two parts: computation code and signal handling code. Workers
send search data requests to lower level synchronizers and receive new
search data or the new MinDist values for further search activity. Depending
on what control signal has been received by a worker from its synchronizer,
the execution of the worker program is interrupted and the new global
MinDist value is substituted (NewMinDist block) or the new search task is
installed in the processors (NewData block). If an inconsistent MinDist has
been received, an error is displayed to the user. After each of these actions,
program returns to the point where it was interrupted.

Graphical Design of Parallel Programs with Control Based on Global
Application States Using an Extended P-GRADE System

119

Figure 4. Control flow diagram of a worker process

4. CONCLUSIONS

We have presented a new P-GRADE-based graphical parallel
programming environment with extended parallel program synchronization
and control features. The assumed de-coupled specification of
synchronization and control in programs is consistent with current
tendencies of systematic design of parallel systems. The control in a parallel
application program is based on asynchronous evaluation of higher level
control predicates. Global predicates used to control program execution are
combined with asynchronous activation and cancellation mechanism. Global
predicates can implement application control and synchronization, which is
correct by construction. The use of the evolved synchronization can improve
efficiency of many parallel application programs. Computational data
transmissions can be de-coupled from synchronization and control

120 DISTRIBUTED AND PARALLEL SYSTEMS

transmissions. In the final implementation of the system, computational data
exchange is assumed to be done by the Gigabit Ethernet, while state and
control messages will be exchanged by a FireWire network.

Parallel implementation of the travelling salesman problem TSP in the
new program design environment has been presented in the paper.
Comparative experiments have shown that implementation of parallel TSP
programs, which applies new control features of PS-GRADE is more
efficient than that using standard P-GRADE features.

Acknowledgements. The authors wish to thank cordially the Laboratory
of Parallel and Distributed Systems of SZTAKI Institute (Institute of
Computers and Automation of the Hungarian Academy of Sciences) in
Budapest for so fruitful co-operation while designing the PS-GRADE system
and having made the source code of the P-GRADE system available.

This work has been partially sponsored by the KBN Grant N. 4T11C 007
22 and internal PJIIT research grants.

5. BIBLIOGRAPHY

[BKT03] J. Borkowski, D. Kopanski, M. Tudruj, Implementing Control in Parallel Programs
by Synchronization-Driven Activation and Cancellation, 11-th Euromicro Conference on
Parallel Distributed and Network based Processing, Genoa - Italy February, 5-7, 2003,
IEEE Computer Society Press, pp. 316-323.

[JB00] J. Borkowski, Towards More Powerful and Flexible Synchronization Primitives, in
Proc. of Inter. Conf. on Parallel Computing in Electrical Engineering PARELEC 2000,
August 2000, Trois-Rivieres, Canada. IEEE Computer Society, pp. 18-22.

[JB04] J. Borkowski, Strongly Consistent Global State Detection for On-line Control of
Distributed Applications, 12-th Euromicro Conference on Parallel Distributed and
Network-Based Processing, PDP 2004, La Coruna, Spain, Feb., 2004, IEEE Computer
Society, pp. 126-133.

[KDF97] Kacsuk, P., Dózsa, G. and Fadgyas, T., GRADE: A Graphical Programming
Environment for PVM Applications Proc. of the 5th Euromicro Workshop on Parallel and
Distributed Processing, London, 1997, pp. 358-365.

[KDFL99] The GRED Graphical Editor for the GRADE Parallel Program Development
Environment, P .Kacsuk, G. Dózsa, T. Fadgyas and R. Lovas, Future Generation
Computer Systems, No. 15 (1999), pp. 443-452.

[MN91] K. Marzullo and G. Neiger Detection of Global StatePredicates, in: Distributed
Algorithms, 5th Int. Workshop, WDAG ’91, Delphi, Greece, 1991, Proceedings, LNCS
579, Springer 1992.

[RFC] Request for Comment RFC1305 Network Time Protocol (Version 3) Specification,
Implementation and Analysis.

[S00] Scott D. Stoller: “Detecting Global Predicates in Distributed Systems with Clocks”.
Distributed Computing, Vol. 13, Issue 2 (2000), pp 85-98.

[TK98] M. Tudruj, P. Kacsuk, Extending Grade Towards Explicit Process Synchronization in
Parallel Programs, Computers and Artificial Intelligence, Vol 17, 1998, No. 5, pp 507-516.

[WA99] B. Wilkinson, M. Allen, Parallel Programming, Techniques and Applications Using
Networked Workstations and Parallel Computers, Prentice Hall, 1999.

PARALLELIZATION OF A QUANTUM
SCATTERING CODE USING P-GRADE: A CASE
STUDY

Ákos Bencsura and György Lendvay
Institute of Chemistry, Chemical Research Center, Hungarian Academy of Sciences,
P. O. Box 17, H- 1525 Budapest, Hungary

bencsura, lendvay@chemres.hu

Abstract We used P-GRADE, a graphical tool and programming environment to paral-
lelize atomic level reaction dynamics codes. In the present case study ABC, a
quantum reactive scattering code written in FORTRAN has been parallelized.
We used the possibly coarsest grain parallelization, i.e. a complete calculation
at each total energy is performed on a node. From the automatic schemes offered
by P-GRADE, the task farm was selected. The FORTRAN code was separated
into an input/output and a working section. The former, enhanced by a data
transfer section operates on the master, the latter on the slaves. Small sections
for data transfer were written in C language. The P-GRADE environment of-
fers a user-friendly way of monitoring the efficiency of the parallelization. On
a 20-processor NPACI Rocks cluster the speed-up is 99 percent proportional to
the number of processors. P-GRADE proved to be user-friendly and made the
programmer’s work very efficient.

Keywords: P-GRADE, quantum scattering, parallelization

1. Introduction
Computer simulation of dynamical processes at the atomic level has been

actively pursued for decades. Although the foundations of the methods were
laid down long ago, really efficient application of the techniques started only
in the last few years when the speed and amount of computers achieved a crit-
ical level, because calculations in reaction dynamics are computationally very
intensive. The current tendency for speeding up the calculations is that one
uses multiple processors on a supercomputer or a cluster, or a Grid, [1, 2, 3].
The purpose of this report is a brief overview of the issues arising when a user
experienced in modeling molecular processes decides to switch to parallel pro-
gramming. Our overview is strictly user-oriented, and we hope to help others
familiar with scientific FORTRAN programming in finding efficient ways of

122 DISTRIBUTED AND PARALLEL SYSTEMS

parallelizing existing dynamics codes, without going through extensive educa-
tion in computer science.

Computer codes written for application in the field of molecular modeling
are generally prepared for sequential execution. When a code is mdified for
parallel execution, the algorithm of the calculation has to be re-organized so
that the possibility that several processors perform calculations at the same
time could be allowed and exploited. The steps of the algorithm have to be set
so that the computational tasks could be assigned to processors running simul-
taneously. Of course, the programmer still needs to take care of proper organi-
zation of data flow between processors, of assigning tasks to processors, and of
collecting the final data. The bottleneck is generally that one needs to know the
commends that perform the communication. Parallelization, however, can be
made easy by the use of software that takes care of implementing the commu-
nication between processors. We have been using for this purpose P-GRADE
(Parallel Grid Run-time and Application Development Environment) devel-
oped at SZTAKI [4, 5, 6, 7]. P-GRADE is a graphical program development
tool and running environment. It provides users with prepared clichés for dif-
ferent data flow models from which one can build the graph of the code using
graphical tools. P-GRADE then generates a code using PVM or MPI that en-
ables parallel execution. The execution can be monitored and optimized using
the “Prove” tool of P-GRADE, which graphically displays in real time how the
processors are utilized, what time is spent on communication etc. The soft-
ware can also prepare codes that can be run on the Grid. In out earlier test
of P-GRADE we parallelized a classical trajectory code that has since been
routinely used to calculate reactive cross sections of chemical reactions [9].
We found P-GRADE to be easy to learn. There are manuals and instructions
available on the web [8]. Some case studies have also been presented in the
literature [10, 11].

In the present case study we describe how we parallelized a quantum scat-
tering code that is used to calculate the main dynamical characteristics of an
elementary chemical reaction of atom A with a diatomic molecule BC. In the
following we first describe how the algorithm was adapted for multiprocessor
use in Section 2, then in Section 3 we detail how the code was modified using
P-GRADE, and finally we present some data on the performance.

2. Re-structuring of the FORTRAN code

Numerical solution of quantum scattering equations requires a complicated
computer code and is computationally fairly intensive [12]. We do not detail
the theory here (see e.g. [13, 14, 15]). Briefly, the time-independent solution
of the coupled channel (CC) equations has to be performed at each total energy
selected. Generally one is interested in reactive and inelastic cross sections at

Parallelization using P-GRADE 123

several total energies. The calculations at separate total energies can be made
indepent from each other. From the computational point of view the solution
of the CC equations involves the calculation of some large matrices (e.g. the
R matrix or the logarithmic derivative matrix of the wavefunction of the size
of about 2000x2000) that are then used to calculate state-to state S matrix ele-
ments, whose absolute value is necessary for the calculation of reactive cross
sections. The calculation of the individual elements of the large matrices is
time-consuming; a major contributor to their computation is the calculation
of the potential energy. The individual elements are not needed once the bf
S-matrix elements are calculated, and can be disposed of. The actual code we
parallelized is the reactive quantum scattering code for triatomic systems, ABC
[16], made available for us by Dr. D. E. Manolopoulos. The time-independent
Schrödinger equation is solved using a log-derivative method [17]. In this
method, the logarithmic derivate of the wavefunction is propagated along the
scattering coordinate (the hyperradius) which is divided into sectors. From the
computational point of view, the propagation is the most time-consuming step.
It has to be done at each set of parameters J, the total angular momentum, p,
parity, E, the total energy. The wavefunction is expanded in term of a basis
set the size of which, in principle, can be varied with the total energy: one
can optimize the basis set size for various ranges of energy in test calculations
by selecting the smallest basis that guarantees a required convergence of the S
matrix elements.

The basic steps of the code are:
input of parameters that include J, p, and the set of total energies to be

considered;
setting up the basis set, i.e. calculation of the rovibrational eigenfunctions of

the possible diatomic molecules that can be constructed from atoms A, B, and
C; these are used at the end of the propagation to determine the elements of the
rearrangement-dependent S matric elements;

in a loop over sectors (steps in the hyperradius) calculate the basis functions
corresponding to the sector and write them to disk; calculate the transforma-
tion matrix from the sector to the next one and write it to disk

in a loop over total energies perform the log-derivative propagation, write the
data to a scratch file

in a loop over total energies read the matrices from the scratch file and cal-
culate the S matrix elements by matching the wavefunction at the end of the
propagation with the diatomic basis of the molecule corresponding to each ar-
rangement.

A disadvantage of this arrangement is that the scratch files can grow too
large (e.g. 40GB) and exceed the available limit because their size is propor-
tional to the number of energies to be run.

124 DISTRIBUTED AND PARALLEL SYSTEMS

In order to test the capabilities of P-GRADE, we have reorganized this algo-
rithm according to the following principle: we perform the propagation of the
log-derivative wavefunction and the analysis of the result of the propagation
separately for each energy. This way the calculation at each energy can be as-
signed to a different processor. After completing a job, the processor can get a
new energy to be calculated. This algorithm can use the task-farm model. The
FORTRAN code requires minimal modifications: after reading the parameters
and setting up the total energies to be calculated, subroutine solve is called, but
one energy is calculated in each call. This way calculation at each energy is
separated. This set-up has an advantage, namely, that each processor gener-
ates its own scratch file, and there is no need for massive data transfer between
processors. In addition, the scratch files remain small because each contains
only data needed for one energy. A disadvantage of this arrangement is that
the sector basis functions are re-calculated by every processor. The time lost
this way is smaller than that needed for propagation at one energy, so in our
case, when each processor calculates more than 10 energies, this time loss is
acceptable, especially when considering that the transfer of the large basis set
matrices would also require some time. We are working on reducing this time
loss by a somewhat different strategy.

In order to use the P-GRADE environment the code needs the following al-
terations at the FORTRAN level:

the main program has to be made a subroutine
instructions for starting an energy have to be inserted
the calculation at an energy needs to be separated into a distinct set of sub-

routines
the output to disk file needs has to be moved to the main subroutine
the FORTRAN segments have to be compiled on each operating system that

will be involved in the computation.
All the other steps can be performed using P-GRADE.

3. Setting up the parallel code using P-GRADE

P-GRADE is a high-level graphical environment providing a general tool
to develop parallel applications. It offers a graphical programming environ-
ment and graphical tools for the whole program development. It has a graphi-
cal editor for program development and a debugger for interactive testing and
monitoring of the performance.

The current version of the program can create MPI, PVM or MPICH-G2
jobs. It inserts the interface commands into the program so that when com-
piled, the whole code becomes an individual program. This way the user does
not need to learn the language of the message passing software. The user can
see a “coarse grain” graphical representation of the parallel code in the sense

Parallelization using P-GRADE 125

that a flow chart is visible and the fine details are automatically taken care of
by P-GRADE.

P-GRADE has a visual programming language, GRAPNEL, and an easy to
use graphical editor. The visual editor helps one to set up the graph of the
code The units of the graph can be sets of instructions written either in C or
pre-compiled FORTRAN subroutines. Currently, FORTRAN commands can
not be be used in these boxes so that a certain familiarity with C is necessary.

In order to gain access to variables used in the FORTRAN COMMON
blocks, one needs to declare those variables in the P-GRADE code by typing
the declarations into the appropriate box. This can be fairly time consuming if
many COMMON block are transferred.

The upper part of Fig. 1 shows the pre-built FARM architecture. Arrows
between the boxes are graphical representations of parallel data transfer.

The lower left panel of Fig. 1 displays the P-GRADE representation of the
master program. The program starts with an initialization and reading the in-
put parameters. The next line is a data broadcasting instruction where all the
necessary input parameters are transferred to the slaves. When a slave receives
the last piece of data, it starts a calculation. The item in the graph is the main
calculating loop. Here we collect results from the slave that sends a signal that
it has finished an energy, do some bookkeeping and send back a flag to the
slave instructing it whether to start a new calculation or not. Then the master
waits for signal from the next slave that finishes its task. After collecting the
required number of energies, each slave gets a “do not continue” signal, and
the master analyzes and writes to disk the results.

The lower right panel of Fig. 1 represents the slave program. After receiving
data from the master, the slave initializes the variables needed for the calcula-
tion and goes into the slave loop. Here it calculates the next energy, and sends
the results back to master, receives the signal whether to continue or not; if so,
it goes back to the beginning of the loop; if not, then quits.

4. Program performance analysis
Parallel execution of the program was tested on our 20 processor cluster

running Rocks v3.0 [18]. The efficiency of the parallelization was examined
with the P-GRADE Monitor that collects trace information about the different
events during the program execution. The collected data can be visualized with
the PROVE visualization tool of P-GRADE in real time or later from a saved
trace file. A result of a test run with 8 processors can be seen in Fig. 2.

In Fig. 2 different horizontal bars represent different processors with the
master in the center. Shades on each bar indicate different process activity,
black means calculation, gray (green in color print) communication. The ar-
rows represent the direction of communication between processors. The top

126 DISTRIBUTED AND PARALLEL SYSTEMS

Figure 1. P-GRADE representation of the quantum scattering program

of the figure shows the different parallel execution options available in P-
GRADE. The bars corresponding to the slaves are all colored black indicating
that there is no idling. We found that during the total execution the slave nodes
spend more than 99 percent of the time by doing calculations.

Parallelization using P-GRADE 127

Figure 2. PROVE visualization of the last minute of parallel execution of the quantum reac-
tive scattering program (from 3min till 3min50sec)

5. Summary

A quantum reactive scattering program written as a sequential code was
parallelized using the P-GRADE graphical environment. P-GRADE made it
possible to quickly parallelize the code for users not familiar with message
passing based on the following algorithm: 1. re-design the parallel algorithm
corresponding to the existing sequential code (this requires deep understanding
how the existing code has been built). 2. separate the FORTRAN or C code
into units of the parallel algorithm and compile those subprograms 3. draw
the graph of the algorithm using P-GRADE 4. fill in any missing boxes with
the necessary program units (using C or C++ within the boxes in P-GRADE
if no separate codes are available) 5. compile, check efficiency and run. This
algorithm has proved to be efficient and useful in several applications.

Acknowledgments

Financial support by the Hungarian Ministry of Education (IKTA 00137)
and by the Hungarian National Scientific Research Fund (OTKA T29726) is

128 DISTRIBUTED AND PARALLEL SYSTEMS

gratefully acknowledged. This work is part of the workgroup METACHEM
[3] supported by COST of EU. We thank Prof. P. Kacsuk, Drs. R. Lovas and
G. Hermann for their help with P-GRADE.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

A. Laganá, A. Riganelli. Computational reaction and molecular dynamics: from simple
systems and rigorous methods to complex systems and approximate methods it Lecture
Notes in Chemistry, 75, 1-12,(2000)

A. Laganá, Towards a Grid-based Molecular Simulator, in: Theory of Chemical Reaction
Dynamics, A. Laganá, G. Lendvay, Eds., Kluwer, New York, in press

COST Action No. D23, METACHEM: Metalaboratories for complex computational ap-
plications in chemistry http://costchemistry.epfl.ch

P-GRADE Graphical Parallel Program Development Environment:
http://www.lpds.sztaki.hu/index.php?menu=pgrade&load=pgrade.php

P. Kacsuk, G. Dózsa: From Supercomputing Programming to Grid Programming by P-
GRADE, WESIC 2003, Lillafured, 2003, pp. 483-494

P. Kacsuk: Development and Execution of HPC Applications on Clusters and Grid by P-
GRADE, European Simulation and Modelling Conference, Naples, Italy, 2003, pp. 6-13.

P. Kacsuk, G. Dózsa, R. Lovas: The GRADE Graphical Parallel Programming Environ-
ment, Parallel Program Development for Cluster Computing: Methodology, Tools and
Integrated Environments (Chapter 10), Nova Science Publishers, New York, 2001, pp.
231-247

http://www.lpds.sztaki.hu/pgrade/p_grade/tutorial/tutorial.html

A. Bencsura and G. Lendvay: Parallelization of reaction dynamics codes using P-
GRADE: a case study, Lecture Notes in Chemistry, 3044, 290-299, 2004.

R. Lovas, et al., : Application of P-GRADE Development Environment in Meteorology.,
Proc. of DAPSYS’2002, Linz, pp. 30-37, 2002

R. Lovas, P. Kacsuk, I. Lagzi, T. Turányi: Unified development solution for cluster and
grid computing and its application in chemistry Lecture Notes in Chemistry, 3044, 226-
235, 2004.

Supercomputer Algorithms for Reactivity, Dynamics and Kinetics of Small Molecules,
edited by A. Laganá (Kluwer, Holland, 1989)

Gunnar Nyman and Hua-Gen Yu : Quantum Theory of Bimolecular Chemical Reactions,
Rep.Progr.Phys. 63 1001, 2000.

J.Z.H. Zhang: Theory and applications of quantum molecular dynamics World Scientific,
Singapore, 1999

G. C. Schatz: Quantum Mechanics of Interacting Systems: Scattering Theory, in Ency-
clopedia of Chemical Physics and Physical Chemistry, J. H. Moore and N. D. Spencer
eds., Institute of Physics Publ, Bristol, pp. 827-863, 2001

D. Skouteris, J.F. Castillo, D.E. Manolopoulos, ABC: a quantum reactive scattering pro-
gram, Comp. Phys. Comm. 133 128-135, 2000.

Manolopoulos D. E. J. Chem. Phys. 85 6425-6429, 1986.

P.M. Papadopulos, M.J. Katz, G. Bruno: NPACI Rocks: Tools and Techniques for Easily
Deploying Manageble Linux Clusters, Cluster 2001 http://rocks.npaci.edu

[8]

[9]

TRAFFIC SIMULATION IN P-GRADE AS A GRID
SERVICE

T. Delaitre, A. Goyeneche, T. Kiss, G. Terstyanszky, N. Weingarten,
P. Maselino, A. Gourgoulis, and S.C. Winter.
Centre for Parallel Computing,
Cavendish School of Computer Science,
University of Westminster,
115 New Cavendish Street,
London, W1W 6UW,
Email: testbed-discuss@cpc.wmin.ac.uk

Abstract Grid Execution Management for Legacy Code Architecture (GEMLCA) is a
general architecture to deploy existing legacy applications as Grid services with-
out re-engineering the original code. Using GEMLCA from the P-Grade portal,
legacy code programs can be accessed as Grid services and even participate in
complex Grid workflows. The parallel version of MadCity, a discrete time-based
traffic simulator, was created using P-Grade. This paper describes how MadCity
is offered as a Grid service using GEMLCA and how this solution is embedded
into the P-Grade portal.

Keywords: Grid service, GEMLCA, traffic simulation, Grid portal, P-Grade.

1. Introduction

Computational simulations are becoming increasingly important because in
some cases it is the only way that physical processes can be studied and in-
terpreted. These simulations may require very large computational power and
the calculations have to be distributed on several computers using clusters or
Grids.

MadCity [1], a discrete time-based traffic simulator, was developed by the
research team of the Centre for Parallel Computing at the University of West-
minster and a parallel version of the program was created with the P-Grade [2]
(Parallel Grid Run-time and Application Development Environment) develop-
ment environment.

MadCity, in common with many other legacy code programs, has been de-
signed and implemented to run on a computer cluster and does not offer the
necessary interfaces in order to be published as a Grid service. One approach

130 DISTRIBUTED AND PARALLEL SYSTEMS

to create a Grid service version of the simulator would be to re-engineer the
original code; implying significant effort. However, using GEMLCA [3] (Grid
Execution Management for Legacy Code Architecture), a general solution to
deploy legacy code programs as Grid services, the traffic simulator can be run
from a Grid service client without any modification to the original code.

This paper describes how MadCity is offered as a Grid service using the
GEMLCA architecture and how GEMLCA and MadCity visualisation are con-
nected to the P-Grade portal [4] and workflow solutions [5].

2. Traffic simulation using P-Grade
MadCity simulates traffic on a road network and shows how individual ve-

hicles behave on roads and at junctions. It consists of the GRaphical Visualiser
(GRV) and the SIMulator (SIM) tools. The GRaphical Visualiser helps to de-
sign a road network file. The SIMulator of MadCity models the movement
of vehicles using the network file. After completing the simulation, the SIM
creates a trace file, which is loaded on the GRV to display the movement of
vehicles.

The computational performance of the simulator depends on a number of
parameters, such as number of vehicles, junctions, lane cut points and roads.
These parameters increase the amount of computational resources required.
The road network can contain thousands of vehicles, roads and junctions. Lane
Cut Points (LCP) [6] are used to maintain the continuity of the simulation be-
tween cluster nodes. LCPs allow vehicles to move from one network partition
to an adjacent partition residing on a different cluster node. Hence, the number
of LCPs affect the amount of communications between cluster nodes.

The traffic simulator must be parallelised to meet the real-time requirements
for large road networks. The SIM of MadCity is parallelised using P-Grade.
Figure 1 shows the parallel simulation structure of MadCity using a parent
node and four children nodes in the P-Grade graphical environment. The par-
ent process sends the network file to each child process together with a partition
identifier. Each node executes a particular road partition to provide simulation
locality and allow efficient parallelisation of the simulator. As shown in Figure
1, neighbouring road partitions (or nodes) communicate by exchanging vehi-
cles moving from one partition to another. The LCP buffer stores the vehicles
leaving one partition and entering another. The vehicles are retrieved from the
LCP buffer by the neighbouring node through synchronous communications.

The traffic simulator can be parallelised using either non-scalable or scalable
designs as shown in Figure 1. Using the non-scalable design, users have to
modify the application code each time when adding more nodes (or processes).
Scalability can also be addressed by using P-Grade templates to set the number
of nodes (or processes) without modifying the application code.

Traffic simulation in P-Grade as a Grid service 131

Figure 1. MadCity in the P-Grade graphical environment.

In the traffic simulator, the P-Grade pipeline template is used where all
nodes perform the same task but on different data. Figure 1(b) shows the
pipeline template-based traffic simulation architecture. The template attributes
window shows that four children nodes (SIZE=4) will participate in the traffic
simulation. The number of nodes can be increased or decreased according to
the simulation requirements by specifying the size in the template attributes
window.

3. Grid Execution Management for Legacy Code
Architecture

GEMLCA is a general architecture to deploy legacy code programs as Grid
services without re-engineering the original code. To offer a legacy application
as an OGSA Grid service, the GEMLCA architecture has to be installed and
the applications have to be registered with it. Following this, the legacy code
programs can be accessed from a Grid service client that can be created by
using either the universal GEMLCA Stubs for Java or the GEMLCA WSDL
[7] file. GEMLCA design is a three-layer architecture. The front-end layer,
called “Grid Services Layer”, is published as a set of Grid Services and it is
the only access point for a Grid client to submit jobs and retrieve results. The
internal or “Core Layer” is composed of several classes that manage the legacy
code program environment and job behaviour. Finally, a back-end, currently

132 DISTRIBUTED AND PARALLEL SYSTEMS

Figure 2. GEMLCA architecture.

called “GT3 Layer”, offers services to the Core Layer that is closely related
to Globus Toolkit 3 [8] and will be updated following the Globus Alliance
road-maps.

Figure 2 describes the GEMLCA implementation and its life-cycle. The sce-
nario for using GEMLCA is described as follows: A Grid Client, after signing-
on his credential, contacts a GEMLCA Grid Service (GLCList) that returns the
available Legacy Code Grid Services (LCGS) to the client (1.1-1.4). From the
returned list and using the Grid Legacy Code Factory (GLCProcessFactory) the
client creates a new Legacy Code Process Instance (GLCProcess) (2.1-2.2) and
gets the LCGS interfaces and parameters that can be changed in order to sub-
mit several Jobs (LCGSJob) to the defined job manager, in this case Condor.
(3.1-3.6). As far as the client credentials are not expired and the GLCProcess
is still alive, the client contacts GEMLCA for checking job status and retrieve
partial or final results any time (4.1-4.4). The client can terminate a particular
job or the GLCProcess (5.1-5.2). Legacy Code deployment is managed by the
GEMLCA GLCAdmin Grid Service. In order to deploy a Legacy Code, a con-
figuration file needs to be created and deployed together with the binary. This
file exposes the Legacy Code environment: Process description, Executable,
Job Manager, Maximum number of jobs accepted, maximum and minimum
processors (for multi-processor job managers) standard output and input and
also a list and description of parameters: name, input, output, mandatory, or-
der, file, command-line, fixed.

Traffic simulation in P-Grade as a Grid service 133

4. Integrating GEMLCA with the P-Grade portal

Grid portals are an essential facility to make Grid applications available
from a Web browser. By connecting GEMLCA to a Grid portal such as the P-
Grade portal, legacy codes applications are available as Grid services through
the Web.

The functionalities of the P-Grade development environment are available
from the P-Grade portal [4]. All of the P-Grade portal services are provided
by one or more portal servers that can be connected to various Grid systems.
P-Grade portal is currently composed of three key Grid services needed by
Grid end-users and application developers: (1) Grid certificate management,
(2) creation, modification and execution of workflow applications on Grid re-
sources and (3) visualisation of workflow progress as well as each component
job. The portal is developed using the GridSphere [9, 10] development frame-
work where a number of portlets have been created to implement the P-Grade
portal end-user Grid services described previously.

University of Westminster and SZTAKI collaborate to enhance the P-Grade
portal in order to execute GEMLCA legacy codes within a workflow. GEMLCA
legacy code is either a sequential or a parallel binary program published as
a Grid service. The portal contains a graphical editor to draw a workflow
graph which defines a set of cooperating sequential or parallel jobs. Integrat-
ing GEMLCA with the P-Grade portal consists of three phases: (1) for the
workflow editor to get a list of legacy code(s) and their Grid services inter-
faces available in GEMLCA resources, (2) for the P-Grade workflow manager
to be able to submit and get results back of legacy codes available through a
GEMLCA resource, and (3) for the P-Grade portal to be able to manage legacy
codes such as adding, modifying or removing legacy codes within a GEMLCA
resource. GEMLCA resource is considered as a GEMLCA instance running
on a particular host.

The PGRADE portal is integrated with GEMLCA as shown in Figure 3.
The workflow editor has been modified to interface with the GLCList Grid
service to get a list of legacy codes available in a GEMLCA resource. The
workflow manager has been enhanced to submit jobs and get results back from
the workflow nodes to the GLCProcessFactory Grid services and to manage
GEMLCA legacy codes by interfacing to the GLCAdmin Grid service.

The integration of the P-Grade portal with GEMLCA, enables the execu-
tion of the parallel version of MadCity from a web browser and to visualise
the simulated traffic densities on a road network by using a macroscopic traf-
fic visualisation applet. The applet is being deployed as a GridSphere portlet
within the P-Grade portal. Westminster developed an applet to display the traf-
fic densities on a road network such as the Greater Manchester area as shown
in Figure 4. The applet requires a macroscopic trace file generated by Madcity

134 DISTRIBUTED AND PARALLEL SYSTEMS

Figure 3. GEMLCA integration with PGRADE portal.

and a description of the simulated road network as input. For each simulation
time step, the road network is displayed using different colours to represent
the density of traffic on each road. Figure 4(a) shows the Macroscopic visu-
alisation output for the full Greater Manchester Road Network. Figure 4(b)
shows visualisation output for a zoomed in area of Greater Manchester Road
Network, with individual roads visible.

5. Conclusion
This paper described a Grid environment in which legacy code applications

like Madcity can be deployed in a service-oriented Grid architecture and ac-
cessed through a user-friendly Web interface. The simulator can be parame-
terised and run from a web browser. The results can be visualised from the
same web browser. The solution utlised the P-Grade development environ-
ment, GEMLCA, P-Grade portal and a visualisation applet for traffic densities
in the following way:

a parallel version of Madcity was designed and implemented using the
P-Grade development environment,

a MadCity legacy code is offered as an OGSA compliant Grid service
using the GEMLCA architecture,

Traffic simulation in P-Grade as a Grid service 135

Figure 4. Macroscopic traffic visualisation applet.

in order to make the legacy code applications available from a Web
browser, P-Grade portal has been enhanced for connecting to GEMLCA,

legacy codes can be part of complex Grid workflows using P-Grade
workflow solution and its connection to GEMLCA,

an applet has been developed and is being deployed as a portlet for visu-
alising traffic densities of a road network.

Acknowledgments

The work presented in this paper is supported by an EPSRC funded project
(Grant No.: GR/S77509/01).

The authors wish to acknowledge the support and contributions of Damian
Igbe, in the traffic simulation aspects, Kreeteeraj Sajadah in investigating GT3
security from University of Westminster, Zoltan Farkas and Tamas Boczko
from SZTAKI.

136 DISTRIBUTED AND PARALLEL SYSTEMS

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

A. Gourgoulis, G. Terstyansky, P. Kacsuk, S.C. Winter, Creating Scalable Traffic Sim-
ulation on Clusters. PDP2004. Conference Proceedings of the 12th Euromicro Confer-
ence on Parallel, Distributed and Network based Processing, La Coruna, Spain, 11-13th
February, 2004.

P. Kacsuk, G. Dozsa, R. Lovas: The GRADE Graphical Parallel Programming Environ-
ment, In the book: Parallel Program Development for Cluster Computing: Methodology,
Tools and Integrated Environments (Chapter 10), Editors: C. Cunha, P. Kacsuk and S.C.
Winter, pp. 231-247, Nova Science Publishers New York, 2001.

T. Delaitre, A. Goyeneche, T. Kiss and S.C. Winter, Publishing and Executing Parallel
Legacy Code using an OGSI Grid Service, Conference proceedings of the 2004 Interna-
tional Conference on Computational Science and its Applications. Editors: A. Lagana
et al. LNCS 3044, pp. 30-36, S. Maria degli Angeli, Assisi(PG), Italy, 2004.

Z. Németh, G. Dózsa, R. Lovas and P. Kacsuk, The P-GRADE Grid Portal, Conference
proceedings of the 2004 International Conference on Computational Science and its
Applications. Editors: A. Lagana et al. LNCS 3044, pp. 10-19, 2004, S. Maria degli
Angeli, Assisi(PG), Italy.

R. Lovas, G. Dózsa, P. Kacsuk, N. Podhorszki, D. Drótos, Workflow Support for Com-
plex Grid Applications: Integrated and Portal Solutions, Proceedings of 2nd European
Across Grids Conference, Nicosia, Cyprus, 2004.

D.Igbe, N Kalantery, S. Ijaha, S.Winter, An Open Interface for Parallelization of Traf-
fic Simulation. Proc 7th IEEE International Symposium on Distributed Simulation and
Real Time Applications (DS-RT 2003), http://www.cs.unibo.it/ds-rt2003/ Oct 23-25
2003 Delft, The Netherlands, in conjunction with 15th European Simulation Sympo-
sium (ESS 2003), http://www.scs-europe.org/conf/ess2003/ October 26-29, 2003 Delft,
The Netherlands.

Web Services Description Language (WSDL) Version 1.2,
http://www.w3.org/TR/wsdl12

The Globus Project, http://www.globus.org

GridSphere consortium; (2003), GridSphere Tutorial, GridSphere,
http://www.gridsphere.org/gridsphere/docs/index.html

Jason Novotny, (2004), Developing grid portlets using the GridSphere por-
tal framework, Max-Planck Institute for Gravitational Physics, http://www-
106.ibm.com/developerworks/grid/library/gr-portlets/?ca=dgrgridw11GSPortFrame

DEVELOPMENT OF A GRID ENABLED
CHEMISTRY APPLICATION*

István Lagzi1, Róbert Lovas2, Tamás Turányi1

1Department of Physical Chemistry, Eotvos University (ELTE)

lagzi@vuk.chem.elte.hu, turanyi@garfield.chem.elte.hu

2Computer and Automation Research Institute, Hungarian Academy of Sciences (MTA SZTAKI)

rlovas@sztaki.hu

Abstract P-GRADE development and run-time environment provides high-level graph-
ical support to develop scientific applications and to execute them efficiently
on various platforms. This paper gives a short overview on the parallelization
of a simulator algorithm for chemical reaction-diffusion systems. Applying the
same user environment we present our experiences regarding the execution of
this chemistry application on non-dedicated clusters, and in different grid envi-
ronments.

Keywords: programming environment, grid, cluster, computational chemistry

1. Introduction
Beside the widely applied PC clusters and supercomputers, different com-

putational grid systems [1] are becoming more and more popular among scien-
tists, who want to run their simulations (having high computational and storage
demands) as fast as possible. In such grid systems, large number of heteroge-
neous resources can be interconnected in order to solve complex problems.

One of the main aims of a joint national project, Chemistry Grid and its ap-
plication for air pollution forecast is to investigate some aspects of Grids, such
as their application as high performance computational infrastructure in chem-
istry, and to find practical solutions. The Department of Physical Chemistry
(ELTE) applied P-GRADE environment to parallelise an existing sequential

*The research described in this paper has been supported by the following projects and grants: Hungar-
ian IHM 4671/1/2003 project, Hungarian OTKA T042459 and T043770 grants, OTKA Instrument Grant
M042110, Hungarian IKTA OMFB-00580/2003, and EU-GridLab IST-2001-32133.

138 DISTRIBUTED AND PARALLEL SYSTEMS

simulator for chemical reactions and diffusions in the frame of the Chemistry
Grid project.

In this paper we introduce briefly the fundamental problems of reaction-
diffusion systems (see Section 2) and its parallelisation with P-GRADE pro-
gramming environment (see Section 3). We present our experiences in details
regarding the execution and performance of this chemistry application on non-
dedicated clusters (see Section 4) taking the advantages of the built-in dynamic
load balancer of P-GRADE run-time environment. Finally, its successful exe-
cution in Condor and Globus based Grids are also presented (see Section 5).

2. Reaction-diffusion equations
Chemical pattern formation arises due to the coupling of diffusion with

chemistry, such as chemical waves [3], autocatalytic fronts [4], Turing struc-
tures [5] and precipitation patterns (Liesegang phenomenon) [6]. Evolution of
pattern formation can be described by second-order partial differential equa-
tions:

where is the concentration, is the diffusion coefficient and is the chem-
ical reaction term, respectively, of the chemical species, and is time. The
chemical reaction term may contain non-linear terms in For chem-
ical species, an dimensional set of partial differential equations is formed
describing the change of concentrations over time and space.
The operator splitting approach is applied to equations (1), decoupling trans-
port (diffusion) from chemistry, i.e.

where and are the diffusion and the chemistry operators, respectively,
and and are the concentration of the species at time and
where is the time step.
The basis of the numerical method for the solution of the diffusion opera-
tor is the spatial discretisation of the partial differential equations on a two-
dimensional rectangular grid. In these calculations, the grid spacing is uni-
form in both spatial directions. A second order Runge-Kutta method is used to
solve the system of ODEs arising from the discretisation of partial differential
equations with no-flux boundary conditions on a 360×100 grid. The Laplacian
is calculated using nine-point approximation resulting in an error of for
the Laplacian.

The equations of the chemical term have the form

Development of a grid enabled chemistry application 139

The time integration of system (2) is performed with the BDF method using
the CVODE package [7, 8], which can solve stiff chemical kinetics equations.

3. Parallel implementation in P-GRADE

In order to parallelise the sequential code of the presented reaction-diffusion
simulation the domain decomposition concept was followed; the two-dimen-
sional grid is partitioned along the x space direction, so the domain is decom-
posed into horizontal columns. Therefore, the two-dimensional subdomains
can be mapped onto e.g. a pipe of processes (see Figure 1, Template: sim win-
dow). An equal partition of subdomains among the processes gives us a well
balanced load during the solution of the reaction-diffusion equations assum-
ing a dedicated and homogeneous cluster or a dedicated supercomputer as the
execution platform.

Figure 1. Parallel code of reaction-diffusion simulation in P-GRADE

140 DISTRIBUTED AND PARALLEL SYSTEMS

During the calculation of the diffusion of the chemical species communi-
cations are required to exchange information on the boundary concentrations
between the nearest neighbour subdomains, which are implemented via com-
munication ports, channels (see Figure 1, Template: sim window, arcs be-
tween small rectangles), and communication actions (see Figure 1, Process:

icons labelled as ’le’ and ’ri’ in the control flow like descrip-
tion).

For the calculation the process invokes external sequential functions (see
Figure 1, bottom of Process: windows), which are available
as sequential third-party code [7, 8] written in C. The implementation is pub-
lished in details in [13].

4. Performance results on non-dedicated cluster
The parallel version of reaction-diffusion simulation has been tested and

fine tuned [13] on SZTAKI cluster using it as a dedicated resource. This self-
made Linux cluster contains 29 dual-processor nodes (Pentium III/500MHz)
connected via Fast Ethernet.

Generally the exclusive access and use of a cluster (e.g. at universities) can
not be guaranteed. Sometimes the application is implemented inefficiently,
and it may cause unbalanced load (and less effective execution) on the cluster
nodes. In both cases the dynamic load balancer [9] of P-GRADE environment
can be applied.

In case of the reaction-diffusion simulator the parallel application showed
balanced CPU loads [13] on a homogenous and dedicated cluster but we ex-
perienced significant slow-down if any of the nodes get an extra calculation
intensive task or the node can not deliver the same performance as the other
ones. The reason for this phenomenon is that the application must synchronise
the boundary conditions at each simulation steps, and they have to wait for the
slowest running process. Such situation can be inspected in Figure 2, Prove
visualisation window when the application was executed on the n2, n3, n4, and
n5 nodes in the first 3 minutes (see the details in Figure 2, smaller Prove win-
dow in left). The space-time diagram presents a task bar for each process, and
the arcs between the process bars are showing the message passing between
the processes. In all the diagrams of PROVE tool, the black colour represents
the sequential calculations, and two different colours; green for incoming and
grey for outgoing communication used for marking the message exchanges.

Thus, we turned on the load balancing support in P-GRADE and re-compiled
the application under PVM (see Figure 2, Application settings dialog window).
In our case, the actual period was set to 180 seconds when the load balancer

Development of a grid enabled chemistry application 141

has to evaluate the execution conditions based on the gathered information and
to make decisions [9].

As the on-line visualisation tool depicts (see Figure 2, Prove window) at
the beginning of the 4th minute the load balancer initiated the migration of
processes to new nodes: n19, n13, n21, and n0 (see Figure 2, Prove window in
right). One message was sent before the migration from the node n2 (process
sim_0) and delivered just after the migration to the node n19 (process sim_1);
the co-ordinated checkpointer in P-GRADE can handle such situations (on-
the-fly messages) without any problems.

We could focus on the interesting parts of the trace (see Figure 2, smaller
PROVE windows) using its zooming facilities. According to statistics the ap-
plication was executed almost optimally from the 5th minute. The migration
took about 1 min and 57 sec due to mainly the large memory images of pro-
cesses (more than 95 MB/process), that must be transferred from the actual
nodes, stored at the checkpoint server, and must be retrieved during the recov-

Figure 2. Performance visualisation on non-dedicated cluster

142 DISTRIBUTED AND PARALLEL SYSTEMS

ery phase of migration on the new nodes. Since the current P-GRADE version
launches only one checkpoint server to store these checkpoint files, the net-
work connection of the single checkpoint server may be a serious performance
bottle neck. In our case the migration caused almost 800 MB network traffic
on the Fast Ethernet network interface of the checkpoint server.

However, the cost of migration is still acceptable since the application con-
tinued its execution more than 2 times faster during the remaining calculation;
one simulation step needed 1.5-1.7 seconds contrary to the earlier measured
3.5-5 seconds. Our application needed only 14 minutes (with 500 simulation
steps) instead of 25 minutes without the intervention of load balancer tool.
Obviously, with more simulation steps we could get more significant speedup.

5. Performance results in the Grid

The simulation has been also tested with 10.000 iterations [13]; the parallel
application was able to migrate automatically to another friendly Condor [10]
pool when the actual pool had become overloaded, as well as to continue its
execution from the stored checkpoint files [2].

The application has been also executed successfully on Globus [16] based
Grid. In order to support the transparent execution of applications on local
and remote (interactive or Grid) resources, P-GRADE provides a new I/O file
abstraction layer (see Figure 1, I/O Files Dialog window), where the physi-
cal data files of the application can be assigned to logical names, which can
be referenced in the application by file operations. We defined the input and
output files and, in this way, all the necessary I/O files can be automatically
transferred to and from the remote site, and the executable can be also staged
by P-GRADE run-time system.

Figure 3. Performance results in Globus mode

Development of a grid enabled chemistry application 143

Having a valid certificate to deploy a Globus resource (instead of the lo-
cal resources), the user can turn on the Globus mode with MPI support in
P-GRADE (see Figure 3, Application settings). On-line monitoring and visu-
alisation is also possible on Globus resources using the GRM/Mercury moni-
toring infrastructure [11]; only a re-compilation is needed for the utilization of
the Globus/MPI/Monitoring facilities.

The user can select the specific Globus resource where the entire application
will be executed in the Manual Mapping Window (see Figure 3) (in MPICH-
G2 mode, processes can be mapped individually to different Globus resources
but this mode showed poor performance in our application due to the frequent
message exchanges between simulation steps). The monitoring infrastructure
provides on-line view similarly to the local execution of job (see Figure 3,
PROVE window). In the presented case, we executed the 10-process pipe ver-
sion of the application as a Globus job. The initial time before the real execu-
tion and the transfer of output files back (i.e. the ’cost’ of Grid based execution
from the user’s point of view) was within 1 minute because we selected the fork
job-manager on the Grid site, the cluster was not overloaded, the size of trans-
ferred files was relatively small (less then 4MB), and the Hungarian academic
network (HBONE) provided high bandwidth between the sites.

6. Related works
P-GRADE has been successfully applied for the parallelisation of differ-

ent algorithms; e.g. Institute of Chemistry, Chemical Research Centre of the
Hungarian Academy of Sciences has recently parallelised a classical trajectory
calculation written in FORTRAN [12] in the frame of Chemistry Grid project.
Some other development systems, such as ASSIST [14], or CACTUS [15], tar-
get the same research community (biologist, chemists, etc.), and they can offer
several useful facilities similarly to P-GRADE. On the other hand, P-GRADE
is able to provide more transparent run-time support for parallel applications
without major user interactions, such as code generation to different platforms
(Condor [10] or Globus-2 [16] based Grids, PVM or MPI based clusters and
supercomputers), migration of parallel jobs across grid sites (or within a clus-
ter) based on automatic checkpointing facilities [2], or application monitoring
of parallel jobs [11] on various grid sites, clusters, or supercomputers [11].

7. Summary
P-GRADE is able to support the entire life-cycle of parallel program devel-

opment and the execution of parallel applications both for parallel systems and
the Grid [2]. One of the main advantages of P-GRADE is the transparency; P-
GRADE users do not need to learn the different programming methodologies
for various parallel systems and the Grid, the same environment is applicable

144 DISTRIBUTED AND PARALLEL SYSTEMS

either for supercomputers, clusters or the Grid. As the presented work illus-
trates, P-GRADE enables fast parallelisation of sequential programs providing
an easy-to-use solution even for non-specialist parallel and grid application
developers, like chemists.

References
[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Foster, I., Kesselman, C.: Computational Grids, Chapter 2 of The Grid: Blueprint for a
New Computing Infrastructure, Morgan-Kaufman, (1999)

Kacsuk, P., Dozsa, G., Kovacs, J., Lovas, R., Podhorszki, N., Balaton, Z., Gombas, G.: P-
GRADE: a Grid Programming Environment. Journal of Grid Computing Volume 1, Issue
2, 2003, pp. 171-197

Zaikin, A. N., Zhabotinsky, A. M.: Concentration wave propagation in two-dimensional
liquid-phase self-oscillating system. Nature 225 (1970) 535-537

Luther, R.: Raumliche fortpflanzung chemischer reaktionen. Zeitschrift fur Elektrochemie
12 (1906) 596-600

Turing, A. M.: The chemical basis of morphogenesis. Philosophical Transactions of the
Royal Society of London series B 327 (1952) 37-72

Liesegang, R. E.: Ueber einige eigenschaften von gallerten. Naturwissenschaflichee
Wochenschrift 11 (1896) 353-362

Brown, P. N., Byrne, G. D., Hindmarsh, A. C.: Vode: A variable coefficient ode solver.
SIAM Journal of Scientific and Statistical Computing 10 (1989) 1038-1051

Cohen, S. C., Hindmarsh, A. C.: CVODE User Guide. Lawrence Livermore National Labo-
ratory technical report UCRL-MA-118618 SIAM Journal of Scientific and Statistical Com-
puting (1994) pp. 97

Toth, M., Podhorszki, N., Kacsuk, P.: Load Balancing for P-GRADE Parallel Applications.
Proceedings of DAPSYS 2002, Linz, Austria, pp. 12-20

Thain,D., Tannenbaum, T., Livny, M.: Condor and the Grid. In F. Berman, A. J. G. Hey,
G. Fox (eds), Grid Computing: Making The Global Infrastructure a Reality, John Wiley,
2003

Balaton, Z., Gombas, G.: Resource and Job Monitoring in the Grid. Proceedings of Eu-
roPar’2003 Conference, Klagenfurt, Austria, pp. 404-411

Bencsura, A., Lendvay, Gy.: Parallelization of reaction dynamics codes using P-GRADE:
a case study. Computational Science and Its Applications, ICCSA 2004, LNCS, Vol. 3044,
pp. 290-299

Lovas, R., Kacsuk, P., Lagzi, I., Turanyi, T.: Unified development solution for cluster and
grid computing and its application in chemistry. Computational Science and Its Applica-
tions, ICCSA 2004, LNCS, Vol. 3044, pp. 226-235

Vanneschi, M.: The programming model of ASSIST, an environment for parallel and dis-
tributed portable applications. Parallel Computing 28 (2002) 1709-1732

Goodale, T., et al.: The Cactus Framework and Toolkit: Design and Applications. 5th
International Conference on Vector and Parallel Processing, 2002, pp. 197-227

Foster, I., Kesselman, C.: The Globus Project: A Status Report. Proc. IPPS/SPDP ’98
Heterogeneous Computing Workshop, pp. 4-18, 1998.

APPLICATIONS

V

This page intentionally left blank

SUPPORTING NATIVE APPLICATIONS
IN WEBCOM-G

John P. Morrison, Sunil John and David A. Power
Centre for Unified Computing,
Dept. Computer Science,
National University of Ireland,
University College Cork,
Cork,
Ireland.

{j.morrison, s.john, d.power}@cs.ucc.ie

The computing power offered by Grids has caught the imagination of many
researchers. Grids offer the potential to access vast resources available in het-
erogeneous and high performance computing systems. However, access to
Grid Computing is typically restricted to those in the scientific and academic
community. This is mainly due to the specialist knowledge required to create
Grid aware applications.

1. Introduction

Abstract The area Grid Computing has been the center of much research recently. Grids
can provide access to vast computing resources from hardware to software. De-
spite all the attention Grid Computing has received, the development of appli-
cations for execution on grids still requires specialist knowledge of the under-
lying grid architecture. This paper describes a programming environment for
the WebCom-G project. This programming environment is used to support the
execution of legacy applications on the WebCom-G system.

WebCom-G is a multi layer platform for executing distributed applications.
Applications are separate from the underlying computing infrastructure and are
specified as Condensed Graphs. Condensed Graphs are used to specify tasks and
the sequencing constraints associated with them. They provide a mechanism for
specifying Control Driven, Coercion Driven and Demand Driven computations
in one uniform formalism. WebCom-G supports fault tolerance, load balancing,
scheduling and security at different levels within its architecture. WebCom-G
seeks to provide Grid access to non specialist users and from the application
developer and end user’s perspectives hide the underlying Grid.

Keywords: WebCom, Grid Computing, Distributed Computing, Application Execution

DISTRIBUTED AND PARALLEL SYSTEMS

Globus[9, 10] is one of the more common Grid Computing infrastructures
in use. It promotes the use of a Grid Information Service[5, 7] to provide
access to distributed resources. Job managers such as Condor[6], Portable
Batch System[18] or the Load Sharing Facility[17] are used to marshal job
execution. Applications are developed using libraries and API’s provided by
PVM[11] and MPI[8], for example.

One of the reasons why the Grid is still unpopular among non-specialists
users is the complexity of application development for this environment. The
developer must provide all the support for communications, fault tolerance and
load balancing in addition to the mechanisms for solving the original problem.
This has to be repeated for each application.

For Grid computing to become more widely accepted, mechanisms to free
the programmer from the underlying architectural details have to be provided.
WebCom-G[14, 16, 19] is a fledgling Grid Operating System. The WebCom-G
project is a grid enabled version of the WebCom[15] metacomputer. It sepa-
rates the application from the execution platform. This is achieved by provid-
ing a multi-layer system implementation. Each layer has particular responsi-
bilities in achieving task execution. These range from an application execution
engine, to layers that carry out scheduling, load balancing, fault tolerance and
security. By separating the application from the underlying infrastructure, the
programmer is free to concentrate on providing a solution to the problem spec-
ified rather than the provision of a complete distributed computing platform to
solve the problem.

Applications executing on the WebCom-G platform are expressed as Con-
densed Graphs[13]. A Condensed Graph represents a program as a directed,
acyclic graph. The semantics of Condensed Graphs permit programs to express
data-driven, demand-driven and control driven computations using a single,
uniform, formalism.

Grid Computing involves the utilisation of resources whose availability is
ever changing in a highly dynamic heterogeneous environment. To cater for
this, a powerful programming model is needed in order to develop applications
to utilise these resources. Examples of programming environments for the Grid
computing area include Ibis [20], BioOpera [3] and Iktara [4].

In this paper, a programming environment for WebCom-G is described. This
programming environment is used to support execution of native applications
by WebCom-G. This is achieved by using specialised compilers to compile
existing source code, and interpret script files. The output from these compil-
ers is a Condensed Graphs representation of the application, capable of being
executed by WebCom-G. Expressing these applications as Condensed Graphs
exposes any parallelism present and allows them to avail the advantages of
WebCom-G such as it’s fault tolerance, load balancing, scheduling and secu-
rity mechanisms.

148

149

Program Execution in WebCom-G

Figure 1. Annotation and Extraction.

Extraction is a process of translating higher level specifications into Con-
densed Graph representation. This process is suitable for specification lan-
guages such as the Globus Resource Specification Language (RSL)[12], for
example. RSL specifies the list of tasks to be executed and their associated
configurations. During extraction, tasks specified in the RSL will be expressed
as nodes in a Condensed Graph. In addition, the task sequencing constraints
specified in the RSL script are represented as arcs in the resulting Condensed
Graph. For extraction, this Condensed Graph can be specified as an XML
document. WebCom-G can dynamically load and execute Condensed Graphs
specified in XML.

Condensed Graph applications executed by WebCom-G receive all the ben-
efits of the WebCom-G system including transparent support for fault toler-
ance, load balancing, scheduling and security. Hence, tasks extracted from
RSL scripts also benefit from these WebCom-G features. For example, if the

2.

Within WebCom-G task sequencing is expressed as a Condensed Graph[13].
Task execution is carried out using appropriate Execution Engine modules.
Support for legacy applications is provided by compiling or translating existing
code into an intermediate representation expressed as a Condensed Graph. This
support is provided by two methodologies called Extraction and Annotation.

Extraction

150 DISTRIBUTED AND PARALLEL SYSTEMS

Figure 2. The process of generating a Condensed Graph from sequential code.

job should fail to execute, WebCom-G will reschedule the job for execution at
a later time.

A different approach has to be adopted for traditional high level languages
like C, C++ and Java. These languages are typically not optimised for execu-
tion in distributed environments, as they normally consist of sequential code.
Attempting to parallelise sequential code is not trivial. A Condensed Graphs
compiler is used to parallelise sequential applications, Figure 2. This com-
piler converts existing code into an XML representation of the associated Con-
densed Graph. The compiler takes existing code and performs a data depen-
dency analysis, using well known compiler techniques such as those described
in [2]. This is illustrated in Figure 3.

This analysis identifies parallelisable data blocks within the source code.
This translation process can be described as either fully automatic or semi au-
tomatic translation.

151

Figure 3. Example translation of sequential C code to Condensed Graphs(CG) XML repre-
sentation. The C program is analyzed to produce an Abstract Syntax Tree(AST) representation.
Applying CG rules to the AST results in the XML representation.

Figure 4. Manually optimising data block dependences obtained from the compiler.

For fully automatic translation, using appropriate interpretation rules, the
identified data blocks are converted into a Condensed Graphs application, suit-
able for execution on WebCom-G.

For semi automatic translation, the uncovered data blocks are presented to
the programmer, via the WebCom-G Integrated Development Environment.
This facilitates the further optimisation of data blocks by the programmer, if
possible. This is outlined in Figure 4.

152 DISTRIBUTED AND PARALLEL SYSTEMS

Annotation

Annotation is a mechanism for allowing programmers to identify parallel
blocks within their source code. This provides the programmer the opportu-
nity to optimise their source code and hence the Condensed Graph obtained
via the fully automatic extraction mechanism outlined previously. This mech-
anism may be used for high level languages as well as proprietary specification
languages.

3. Automatic Parallelization
The Extraction(CG) Compiler being developed, will expose available paral-

lelism using a combination of the Extration and Annotation mechanisms out-
lined in Section 2.

The compilation process depicted in Figure 2 comprises four stages: source
code analysis, source code restructure, data dependency analysis using the
Condensed Graph rules, and the generation of parallel code in Condensed
Graph representation.

The CG compiler will attempt to fully automate the procedure of transform-
ing traditional source code into a Condensed Graphs representation, capable of
being executed in parallel. This parallelising compiler inserts all the necessary
CG information into its intermediate representation.

The compiler, depicted in the Figure 2, accepts as input a source code. This
input will be parsed to produce an Abstract Syntax Tree (AST)[21]. The AST
represents the syntactic structure of the source code in a tree format. This tree
structure will then be converted into block representation and subsequently
flow graph representation. Block representation helps to identify the blocks of
program structure within the source code.

The Parser module consists of Lexical Analyser and Parser. The Lexical
Analyser scans the source code to identify tokens. The Parser takes the tokens
produced by the analyser and produces a syntax tree corresponding to prede-
fined Grammar rules. ANTLR[1] is used to generate the AST from higher level
languages such as C, C++ and Java.

The flow graph representation outlines the program flow and identifies the
data blocks that may be parallelised within the Condensed Graph representa-

Solutions must be developed to free application programmers from the low
level complexity of parallel programming in Grid environments. In this paper,
the WebCom-G Programming Environment is presented. This environment
supports the execution of existing applications on WebCom-G. The program-
mer is freed from the complexities of creating or employing complicated dis-
tributed computing systems in order to develop solutions to problems.

Different mechanisms for application execution were presented, ranging
from the extraction of parallelisable tasks from scripting language files, to an-
notating preexisting native codes. Using compilation techniques, data blocks
obtained by using data dependencies are converted into Condensed Graphs for-
mat and executed by WebCom-G.

The goal of WebCom-G is to hide the Grid, by providing a vertically in-
tegrated solution from application to hardware while maintaining interoper-
ability with existing Grid technologies. In addition to maintaining a vertically
integrated solution, the available services will be exploited to increase func-
tionality and effect interoperability. The provision of such a Grid Operating
System will remove much of the complexity from the task of the application
developer.

153

tion. Control flow, Data flow and Data dependency analysis is performed on
the flow graph to generate the Condensed graph representation, that will sub-
sequently execute on WebCom-G.

4. Conclusions and Future Work

Acknowledgments

This work is funded by Science Foundation Ireland, under the WebCom-G
project.

References

ANTLR. http://www.antlr.org.

Utpal Banerjee. Dependence Analysis. Kluwer Academic Publishers, Boston, Mas-
sachusetts, 1997.

Win Bausch, Cesare Pautasso, Reto Schaeppi, and Gustavo Alonso. BioOpera: Cluster-
aware Computing. IEEE International Conference on Cluster Computing (CLUS-
TER’02), September 23 - 26, 2002, Chicago, Illinois.

Bor Yuh Evan Chang. Iktara in ConCert: Realizing a Certifirf Grid Computing Frame-
work from a Programmers Perspective. School of Computer Science, Carnegie Mellon
University, Pittsbourghm June 2002, Technical Report: CMU-CS-02-150.

Karl Czajkowski, Steven Fitzgerald, Ian Foster, and Carl Kesselman. Grid Information
Services for Distributed Resource Sharing. Proceedings of the 10th IEEE International
Symposium on High Performance Distributed Computing.

[1]

[2]

[3]

[4]

[5]

D. H. J Epema, Miron Livny, R. van Dantzig ans X. Evers, and Jim Pruyne. A World-
wide Flock of Condors: Load Sharing among Workstation Clusters. Journal on Future
Generations of Computer Systems, Volume 12, 1996.

Steven Fitzgerald, Ian Foster, Carl Kesselman, Gregor von Laszewski, Warren Smith, and
Steven Tuecke. A Directory Service for Configuring High-Performance Distributed Com-
putations. Proceedings of the 6th IEEE International Symposium on High Performance
Distributed Computing.

Message Passing Interface Forum. MPI: A Message-Passing Interface Standard. The
International Journal of Supercomputer Applications and High-Performance Computing,
Volume 8, 1994.

I. Foster and C. Kesselman. Globus: A Metacomputing Infrastructure Toolkit. Interna-
tional Journal of Supercomputer Applications, 11(2):115-128, 1997.

I. Foster and C. Kesselman. The Grid: Blueprint for a New Computing Infrastructure.
Published by Morgan Kaufmann Publishers inc. ISBN: 1-55860-475-8.

Al Geist, Adam Beguelin, Jack Dongerra, Weicheng Jiang, Robert Manchek, and Vaidy
Sunderam. PVM: Parallel Virtual Machine A Users’ Guide and Tutorial for Networked
Parallel Computing. MIT Press, 1994.

Globus. Globus RSL. http://www.globus.org/gram/rsl_spec1.html.

John P. Morrison. Condensed Graphs: Unifying Availability-Driven, Coercion-Driven
and Control-Driven Computing. PhD Thesis, Eindhoven, 1996.

John P. Morrison, Brian Clayton, David A. Power, and Adarsh Patil. WebCom-G: Grid
Enabled Metacomputing. The Journal of Neural, Parallel and Scientific Computation.
Special issue on Grid Computing. Guest Editors: H.R. Arabnia, G. A. Gravvanis and
M.P. Bekakos. April 2004.

John P. Morrison, James J. Kennedy, and David A. Power. WebCom: A Volunteer-Based
Metacomputer. The Journal of Supercomputing, Volume 18(1): 47-61, January 2001.

John P. Morrison, David A. Power, and James J. Kennedy. An Evolution of the WebCom
Metacomputer. The Journal of Mathematical Modelling and Algorithms: Special issue on
Computational Science and Applications, 2003(2), pp 263-276, Editor: G. A. Gravvanis.

Platform Computing: Load Sharing Facility. http://www.platform.com.

Portable Batch System. http://www.openpbs.org.

David A. Power, Adarsh Patil, Sunil John, and John P. Morrison. WebCom-G. Proceed-
ings of the international conference on parallel and distributed processing techniques and
applications (PDPTA 2003), Las Vegas, Nevada, June 23-26, 2003.

Rob V. van Nieuwpoort, Jason Maassen, Rutger Hofman, Thilo Kielmann, and Henri E.
Bal. Ibis: an efficient Java-based grid programming environment. Proceedings of the
2002 joint ACM-ISCOPE conference on Java Grande, p. 18-27, November 03-05, 2002,
Seattle, Washington, USA.

D. A. Watt. Programming Language Processors. Prentice Hall International, Hemel
Hempstead, UK, 1993.

154 DISTRIBUTED AND PARALLEL SYSTEMS

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

GRID SOLUTION FOR E-MARKETPLACES
INTEGRATED WITH LOGISTICS

L. Kacsukné Bruckner1 and T. Kiss2

1Institute of Information Systems and Logistics, International Business School, H1021
Budapest Tárogató út 2-4, e-mail: lkacsuk@ibs-b.hu;
2 Centre for Parallel Computing, Cavendish School of Computer Science, University of
Westminster, 115 New Cavendish Street, London, W1W 6UW, e-mail: kisst@wmin.ac.uk

Electronic marketplaces are important facilitators of today’s e-business
activities. Besides substantial advantages offered by these exchange sites,
e-marketplaces do not work up to their full potential at the moment. This
paper describes both a new business model and its technical
implementation using Grid technology. A new, three-sided e-commerce
model is suggested that integrates buyers, sellers and logistics service
providers who all participate in the same negotiation process. To solve
computation intensive optimisation tasks and to integrate back-office and
marketplace applications, a Grid services based marketplace
implementation model is outlined.

The evolution of business models and technological solutions
advance together like intertwining spirals motivating and supporting
each other. Business requirements drive information technology (IT) to
find new tools and techniques that make businesses develop new needs
again. Early electronic commerce – Electronic Data Interchange (EDI) -
was started because telecommunication between computers facilitated a
new relationship between businesses. The rise of new business needs
resulted in new communication standards and protocols. Real e-
commerce was born out of the opportunity offered by the World Wide
Web and triggered new IT researches again. After the unrealistic hype of
the 90’s and the crises around 2000 e-commerce by now has entered the
reality phase where efficiency drives the businesses, Internet usage adds

Abstract:

Key words: e-business, logistics, e-marketplace, Grid service, legacy code

1. INTRODUCTION

value and increases the profitability of the companies. (Plankett Research
2004)

A main target area of seeking business efficiency is supply chain
management (SCM). Today a substantial part of supply chains are
managed across the Internet still they contain a surprisingly high amount
of inefficiencies. (Oliver at al. 2002) Both business and technology sides
should be revised to find ways of improvement. New e-commerce
models might be considered and the latest information technology tools
searched for to support them.

The Grid concept has been created for solving computation intensive
scientific problems, but the possibility of business applications was soon
discovered. The convergence between Web services and Grid
computing, that was triggered by the specification of OGSA (Open Grid
Services Architecture) (Foster et al., 2002), resulted in even more
intensive interest from large industry players towards Grid-based
solutions. OGSA defines a Grid architecture that is based on Web service
standards and protocols. As Web services are becoming more and more
common in business applications, a Grid architecture based on SOAP
(Simple Object Access Protocol) communication and WSDL (Web
Services Description Language) service descriptions is the natural model
to adopt in a business environment.

This paper would like to provide a step forward both in the fields of
business and technology. As an answer to SCM problems a new, three-
sided e-commerce model is suggested that integrates buyers, sellers and
logistics service providers in the same negotiation process. This
marketplace helps trading partners to minimise their costs and increase
their profit. The online optimisation requires large amounts of
computation without any delay, which has focused attention on Grid
technology. Following the direction set by Kacsukné (2004) and using
the Grid-based e-marketplace architecture introduced by Kiss at al.
(2004) this article gives a complex picture of the new e-marketplace
model and its planned implementation.

B2B e-marketplace models can be classified as buyer-oriented, seller-
oriented and intermediary marketplaces. The first type is facilitated by a
company or consortium with big buying potential aiming at optimising
procurement costs and is contributed by a large number of sellers. A
seller-oriented model is just the opposite while intermediary
marketplaces bring together a high number of buyers and sellers.
According to industries we distinguish between vertical marketplaces
serving one industry and horizontal models that serve several industries.
Among seller-oriented vertical marketplace providers we can find many

156 DISTRIBUTED AND PARALLEL SYSTEMS

2. INTEGRATING LOGISTICS INTO E-
MARKETPLACES

Grid Solution for e-Marketplaces Integrated with Logistics 157

third party logistics companies (3PL) that undertake packaging,
transportation, warehousing etc. However, none of the currently used
models enable optimisation that includes logistical costs as well. E-
marketplaces selling goods either do not offer logistical solutions at all
or offer a single solution or 2-3 possibilities in different time-cost ranges.
Electronic distributors undertake the task of mediating between buyers
and seller providing logistical services as well but this excludes
competition from the 3PL side.

A new approach given by Kacsukné & Cselényi (2004) suggests a
model that really integrates logistics services providers to goods’ e-
marketplaces. In this model the logistics providers are placing their
offers step by step during the negotiation of buyers and sellers then each
time a combined proposal showing the total costs is created by the

marketplace. The general framework of the integrated marketplace can
be seen on Figure 1. In the centre there is the marketplace engine to
which the entities from all the three sides – buyer, seller and 3PL – are
joining with the help of front-end processors. The ratio of the number of
buyers and sellers determines if the model is buyer-oriented, seller-
oriented or intermediary type.

It is assumed that all participants have advanced enterprise resource
planning (ERP) systems and scheduling programs that can provide the
front-end processors with the relevant data within a short time.

To illustrate the computational tasks of marketplaces integrated with
logistics we outline a three-sided auction algorithm involving multiple
products, multiple buyers and multiple 3PLs in a single transaction:
1. The buyer issues a request for proposal (RFP) identifying the

requirements
2. Sellers bid offering products.

Figure 1.: Framework for an e-marketplace integrated with logistics

We outline the optimisation algorithm of Step 4. Let us suppose that
the buyer would like to purchase N different product items in a
marketplace where M sellers and L logistics providers participate. The
optimal proposal can be chosen by minimising the total costs i.e. the sum
of the purchase price, the transportation costs and the warehousing costs
for the period from the time of the actual delivery to the latest delivery as
formulated in (1). We suppose that all the required amounts can be
purchased, which is expressed by (2).

158 DISTRIBUTED AND PARALLEL SYSTEMS

3.

4.

5.

The marketplace engine forwards the bids to the 3PLs who place their
bids for logistics services.
The marketplace engine aggregates the offers from seller and 3PLs
and forwards the best one to the buyer
The cycle is continued until the lowest accumulated cost is achieved.

Where:

=1, if i. product is purchased from the k. seller.
=0 otherwise
=1, if i. product from k. seller is delivered by 1. 3PL.
=0 otherwise
unit price of the i. product asked by the k. seller
unit cost of getting the i. product from the k. seller via the 1.

3PL
quantity of the i. product purchased from the k. seller
required quantity of the i. product
the technical factor of storing of the i. product for a time

period
ce capital tying up cost factor for a time period

the latest possible delivery time of the i. product
the actual delivery time of the i. product from k. seller by 1.

3PL.

This is an integer programming problem with and binary
variables that should be solved in each round of the auction process. This
model is a grossly simplified illustration of the computational tasks
because here we disregarded of the possible discounts for buying and
transporting in bulk that makes the problem much more complex.

Besides the substantial advantages, like reduced intermediation costs,
integrated processes in supply chain, shortened purchase cycle, greater
transparency and lower administrative costs, e-marketplaces are still
facing significant technical difficulties. Integrating legacy back-office
applications and ERP systems with marketplaces is a complex,
expensive, but necessary task to utilise fully the opportunities of
exchanges. Also, marketplaces offer only limited functionality today
because of the difficulties in integrating existing value-added services.
These services may also require large computational power like the
optimisation algorithm described in section 2.

The following e-marketplace model based on Grid and Web services
concepts offers solutions for these problems. If both back-office and
marketplace applications are implemented as Grid services they are able
to communicate with each other by exchanging standard SOAP
messages. Interoperability is provided by Web services standards despite
any differences in hardware platforms, operating systems or
programming languages applied. A Grid service based model also
provides the possibility to extend the functionality of exchanges.
Existing legacy applications run by participants or third party application
service providers are offered as Grid services and can easily be
integrated with the marketplace solution. In addition, the substantial
amount of calculation that may be required can be distributed by
introducing a special Grid implementation called Marketplace Support
Grid (MSG) that uses the computation power offered by participants who
choose this form of contribution instead of paying the registration fee.

The general architecture of MSG is illustrated on figure 2. The
marketplace engine coordinates the business transactions communicating

with the front-end processors of the participants. The optimisation
problems are passed to the Computation Centre. This unit consists of the

Grid Solution for e-Marketplaces Integrated with Logistics 159

3. ROLE OF GRID COMPUTING IN E-
MARKETPLACES

Figure 2. Marketplace Support Grid Architecture

Computation Coordinator, a set of Grid services that facilitate the
algorithms along with the Internal Registry where they are registered.
The Computation Coordinator will run the core program distributing and
invoking the relevant Grid services on the other participants’ computers.
All buyers, sellers and 3PLs who join the primary marketplace may take
part in the MSG as well. They adopt a compute server, a special Grid
service server defined by Sipos & Kacsuk (2004) that can host and
execute a Grid service sent to it. These compute servers will be
registered in the MSG Registry. The Computation Coordinator will
allocate the Grid services of the algorithms dynamically to compute
servers, send the services and get the results after invoking them.
External knowledge service providers will also be registered in the MSG
Registry enabling the Computation Coordinator to access them.

However, despite the significant advantages offered by Grid
technology, it would be impossible to convince marketplace participants
to totally reengineer their existing applications or develop completely
new versions of them based on Grid services. GEMLCA (Grid Execution
Management for Legacy Code Architecture) (Delaitre et al., 2004) offers
a relatively easy and painless solution for this. By installing GEMLCA
both by the marketplace, sellers, buyers and logistics service providers,
legacy applications can be offered as Grid services without reengineering
the original code.

GEMLCA, a general architecture to deploy legacy code programs as
Grid services, is developed by the research team of Centre for Parallel
and Distributed Computing at the University of Westminster. GEMLCA
is a client front-end Grid service that offers a number of interfaces to
submit and check the status of computational jobs, and get the results
back.

GEMLCA design is a three-layer architecture. The Grid Service
front-end layer enables the registration of already deployed legacy code
applications and provides the Grid service access point to them. The
middle layer manages the legacy code program environment and job
behaviour, and the inner, currently GT3 (Globus Toolkit version 3) layer
offers services in order to create a Globus RSL (Resource Specification
Language) file and to submit and control the job using a specific job
manager.

Users only have to install GEMLCA and legacy applications can be
offered as Grid services without re-engineering the code. The legacy
program can be run from a Grid service client and even complex
workflows can be constructed with the help of a workflow engine like
the one in P-Grade (Kacsuk et al., 2001).

160 DISTRIBUTED AND PARALLEL SYSTEMS

4. GRID EXECUTION MANAGEMENT FOR
LEGACY CODE ARCHITECTURE

Grid Solution for e-Marketplaces Integrated with Logistics 161

The Grid services based e-marketplace model utilising the GEMLCA
architecture is illustrated on figure 3.

The transformation of e-marketplaces can be done in two phases.
During phase 1 marketplace operators and participants install GEMLCA
that provides the capability of accessing existing legacy marketplace,
back-office and third party applications through Grid service clients. The
legacy programs need to be registered with the GEMLCA architecture,
and using the WSDL description of the GEMLCA Grid service clients
have to be generated. Following this, every communication happens by
exchanging SOAP messages. GEMLCA takes care of identifying users,
transferring input and output data and submitting jobs to local job
managers. Phase 2 means the integration of new applications,
specifically developed as Grid services, into the architecture. This
requires the inclusion of local UDDI (Universal Description, Discovery,
and Integration) registries for both GEMLCA and for new Grid services

too. As all applications are accessed as Grid services and all
communication happens through SOAP messages, interoperability of
different solutions and the integration of back-office applications and
value added services with the marketplace are provided.

Figure 4 details phase 1 solution showing file transfer and user
authentication, and also demonstrates a possible architecture for the
MSG.

5. GRID SERVICES BASED E-MARKETPLACE
MODEL WITH GEMLCA

Figure 3. E-Marketplace Model Based on Grid Services

162 DISTRIBUTED AND PARALLEL SYSTEMS

The architecture uses GT3 security solutions to authenticate users and
to delegate user Grid credentials to the Globus MMJFS (Master
Managed Job Factory Service) for the allocation of resources. In order to
transfer input and output parameters the client contacts an RFT (Reliable
File Transfer) service instance that conducts the data exchange between
the client and the GEMLCA architecture. All these functionalities are
completely transparent from the user’s point of view and are all managed
by GEMLCA.

Local back-office applications are always executed on the company’s
own compute server. However, marketplace applications and value
added services may require large computing power and can be
distributed on the support Grid. This requires an MSG registry Grid
Service, where the local compute servers register and describe their
parameters. Before submitting a job GEMLCA contacts this registry,
finds an appropriate compute server and submits the job there. To
complete this solution the current GEMLCA architecture should be
extended in order to query the MSG registry and to be able to submit
computational jobs to a remote compute server.

Figure 4. Marketplace Support Grid Architecture with GEMLCA

6. SUMMARY

This paper has introduced a new type of e-marketplaces and outlined a
Grid-based solution for it. The business level model is based on the

contribution of buyers, sellers and logistics service providers.
Optimisation algorithms involve lengthy computation. The solution
suggested here exploits the advantages of Grid-services in two ways. On
one hand Grid-services are used for conducting business on the
marketplace enabling participants to integrate their existing business
solutions easily. On the other hand partners computing resources are
used to form a Marketplace Support Grid that operates with portable
services. The further research work is two folded. On the business level
the details of the mathematical model should be elaborated first, then the
development of the distributed optimisation algorithms will be
continued. On the technological level the implementation of the original
GEMLCA design architecture has to be finished. Following this the
necessary extensions required by e-marketplaces outlined in this paper
have to be further elaborated and implemented.

The work presented in this paper is partly supported by EPSRC funded
project, Grant no: GR/S77509/01. The authors wish to acknowledge the
Support of University of Westminster, University of Miskolc and
SZTAKI.

Delaitre, T., Goyeneche, A., Kiss, T., Winter, S.C., Publishing and Executing Parallel
Legacy Code using an OGSI Grid Service, To appear in Conf. Proc. of the 2004
ICCSA. May 2004, Assisi (PG), Italy

Foster, I., Keselman C., Nick, J., Tuecke, S., The Physiology of the Grid: An Open Grid
Services Architecture for Distributed Systems integration, 2002,
http://www.globus.org/research/papers/anatomy.pdf

Kacsuk. P., Dozsa G., Lovas, R., The GRADE Graphical Programming Environment, In
the book: Parallel Program Development for Cluster Computing (Chapter 10),
Editors: Kacsuk P., Cunha, J.C., and Winter, S.C., pp. 231-247, Nova Science
Publishers New York, 2001.

Kacsukné Bruckner, L..: A Grid-based E- marketplaces Model Integrated with Logistics
Mipro 2004, International Scientific Conference May 2004, Opatija, Croatia

Kacsukné Bruckner, L., Cselényi, J.: E- marketplaces Model Integrated with Logistics
MicroCAD 2004, International Scientific Conference March 2004, Miskolc, Hungary

Kiss, T., Terstyanszky, G., Winter S.,: Electronic marketplaces based on OGSI Grid
Services MicroCAD 2004, International Scientific Conference, March 2004, Miskolc

Oliver, K., Laseter, T. Chung, A., Black, D. (2002) End Game
http://www.bah.de/content/downloads/logistics_endgame.pdf

Plankett Research (2004) Major Trends in E-Commerce and Internet Business. 2004,
pp7.-17. Plunkett Research, Limited; Houston; http://www.plunkettresearch.com

Sipos, G. Kacsuk, P. (2004) : Connecting Condor Pools into Computational Grids by
Jini, AxGrids Conference, January 2004, Nicosia, Cyprus

Grid Solution for e-Marketplaces Integrated with Logistics 163

7. ACKNOWLEDGEMENTS

8. REFERENCES

This page intentionally left blank

INCREMENTAL PLACEMENT OF NODES
IN A LARGE-SCALE ADAPTIVE
DISTRIBUTED MULTIMEDIA SERVER

Tibor Szkaliczki*

Computer and Automation Research Institute of the Hungarian Academy of Sciences

sztibor@sztaki.hu

László Böszörményi
University Klagenfurt, Department of Information Technology

laszlo@itec.uni-klu.ac.at

An incremental algorithm is proposed to dynamically place the proxies of the
Adaptive Distributed Multimedia Server (ADMS) developed at the University
Klagenfurt. In order to enhance the performance of the server, the proposed
algorithm examines the suitable network nodes for hosting proxies. The main
benefit of the algorithm is the capability to process large problems within strict
time constraints. The short running time of the algorithm enables the distributed
server to adapt quickly to the changing network parameters and client demands.

It is a usual task to select nodes for hosting dynamic server applications in
a network. The Adaptive Distributed Multimedia Server (ADMS) of the Uni-
versity Klagenfurt [Tusch, 2003] is able to add and remove its components to
different nodes of the network. This novel feature of the multimedia server en-
ables the dynamic placement of the server components according to the current
requests and the QoS parameters of the network. The running time of the host

*Partial support of the EC Centre of Excellence programme (No. ICA1-CT-2000-70025) and the Hungarian
Scientific Research Fund (Grant No. OTKA 42559) is gratefully acknowledged.

Abstract

Keywords: incremental algorithm, multimedia server, video streams, host recommendation,
data collector

1. Introduction

recommendation algorithm becomes crucial in this case since the delivery of
the data-streams can start only after the placement of the server nodes.

In this paper, we propose an incremental algorithm that is especially suit-
able for large-scale distributed video servers delivering stream-data to large
number of clients. In this case the time-consuming algorithms aiming at the
“perfect” solution are not applicable. The proposed algorithm takes the pos-
sible nodes one after the other, and it places a proxy at the examined node if
it improves the solution. The simplicity of the proposed algorithm enables to
find an initial solution as fast as possible and than the algorithm incrementally
improves it complying with the time constraints in order to approximate the
optimal placement.

166 DISTRIBUTED AND PARALLEL SYSTEMS

2. Related Work
Finding the optimal deployment of proxies in a network is a well known

problem in the literature [Steen et al., 1999], [Qiu et al., 2001]. However, we
cannot use the former results directly because of the significant differences
between the ADMS proxies and the well-studied web-proxies. The placement
of the web-proxies cannot be changed later or with high cost only. Moreover,
the multimedia server provides huge data-streams instead of documents and
images. The caching problems of the multimedia servers are not in the scope
of the present paper, they are discussed in [Tusch et al., 2004].

In an earlier paper we dealt with the configuration recommend,ation al-
gorithms for the offensive adaptation [Goldschmidt et al., 2004]. We pro-
posed four different algorithms (greedy, particle swarm, linear programming
rounding and first ideas on an incremental algorithm) and compared the re-
sults gained by running their implementations on different test networks. The
particle swarm algorithm, a kind of evolutionary algorithms produced the best
result while the incremental algorithm found the solution in the shortest time.
The current paper explores the incremental algorithm in detail. We present the
results after the definition of the problem model.

Incremental algorithms are applied to many problems in the area of the com-
binatorial optimisation, see as an example [Ramalingam and Reps, 1996, Zan-
den, 1996]. Their main step is updating the solution of a problem after a unit
change is made in the input. The incremental algorithms result in significant
decrease of computation time in case of many problems.

3. The problem model

The task is to find suitable locations for proxies of the distributed multime-
dia server while maximising the clients’ satisfaction and minimising the net-
work load. The clients receive the same video in parallel. The videos are stored
at the server nodes. The proxies get the desired video from the servers and for-

Incremental Placement of Nodes in a Large-Scale Adaptive ... 167

ward the received packets to the clients without storing them. According to
the present model, the proxies can reduce the bandwidth of the video and can
send the same video to different clients with different bandwidths. The proxies
can be located only on nodes prepared for hosting dynamic server components.
The nodes that are able to host proxies are called possible proxies.

Technical report [Goldschmidt et al., 2004] contains the detailed description
of the problem model. The network model is basically a graph where the
nodes are called areas. An area is either a subnet (including backbone links)
or a router that connects subnets. The edges of the graph are the connections
between the routers and the subnets they are part of. We assume that we know
the Quality of Service attributes of each area: bandwidth, delay jitter, etc.

There are three kinds of components that can be found on the nodes, namely
servers, possible proxies and clients. In the problem specification, each area
may contain several components with different types, such as clients, possible
proxies and servers. The clients define their demands as lists that contain QoS
requirements (e. g. bitrate and delay jitter) in decreasing order of preference.
In the current model we assume that all clients want to see the same video
immediately.

The solution of a problem is described as a possible configuration that pro-
vides the following information for each client: the index of the QoS demand
that has been chosen to be satisfied, the possible target node that hosts the
proxy for the client, the server, where the video should be collected from.

The following cost functions are defined to measure the quality of the so-
lutions: the network resource needs (total allocation), the number of rejected
clients, the sum of the chosen demand indices of the clients (linear badness),
and the so called exponential badness, that is defined as where C is
the set of clients, and is the index of the chosen demand parameter for client

Table 1 gives a short summary of the results published in [Goldschmidt
et al., 2004] in order to compare different host recommendation algorithms.
The incremental algorithm can find a solution in the shortest time. The number
of rejections is also very low, but the exponential badness is higher by more
than 30 percents than in case of the swarm algorithm.

We enhance our model published earlier for the case when huge number
of clients exist in the network. We want to serve as many clients as possible
with the server, which can be much more than the number of the areas of the
networks. Fortunately, the variety of the client demands is limited in practical
cases regarding the case where all clients demand the same video. This enables
to handle many clients without significant increase of the running time. Now,
let the clients denote client groups with the same demand lists in a subnet. The
problem specification can be simply modified by adding the size of the client
groups to the description of the client demands. Thus, the number of client
groups can be bounded by the constant multiple of the number of nodes where
the constant is typically smaller than ten. The client groups may be divided
into smaller groups at the output, because the clients may receive the same
video in different quality even if they belong to the same client group.

168 DISTRIBUTED AND PARALLEL SYSTEMS

4. Incremental algorithm

According to the results presented on Table 1, the incremental algorithm
proved to be promising to find a solution for large-scale networks.

A special graph is applied to store and retrieve the client-proxy-server routes
that are able to satisfy the client requests. We call it FLP graph, because the
idea comes from the facility location problem, a kind of optimisation problem
in the area of operations research. One set of the nodes denotes the clients,
the other one represents the proxy-server pairs referred to facilities. The edges
between them correspond to the client-proxy-server routes. An edge is put into
the graph only if the route is able to satisfy the request of the client. Using this
graph, we can easily retrieve each routes for a proxy or a client.

The original algorithm is modified in order to accelerate the generation of
the initial solution. The algorithm generated first the FLP graph. However, this
can be time-consuming for large-scale networks. For this reason, the gener-
ation of the FLP graph is partitioned into smaller steps processing individual
proxies which are inserted into the incremental algorithm.

The parameters of the routes between the proxy and each other nodes can
be calculated in Step 2 by running the shortest path algorithm. The QoS pa-

Incremental Placement of Nodes in a Large-Scale Adaptive … 169

rameters of the client-proxy-server routes can be easily determined from the
results calculated in Step 2. If the QoS parameters of the route satisfy any re-
quirements of the client, an edge is added to the FLP graph between the current
client and facility. The algorithm stores the parameters of the route at the edge
together with the index of the first requirement of the client that can be satisfied
by the represented client-proxy-server route.

The algorithm selects facility in Step 5 if there is at least one client
among the nodes adjacent to the facility that it is still not assigned to any fa-
cility or if client is assigned to facility then the parameters of the edge
between and are better than that between and and the badness of the
first satisfiable demand on the edge between and is not greater than that
of the satisfied demand on the edge between and These criteria are com-
plemented with one more in Step 8: the demand of client can be satisfied
through facility without overloading the network.

In order to accelerate the algorithm, only a subset of the facilities is pro-
cessed instead of each possible proxy-server pair. We tested some different
kinds of subsets in order to determine how the number of processed facilities
can be substantially reduced without increasing the cost values. According to
our experiences, a facility may be omitted from processing if there is another
one where each of the QoS parameters are better. The results published in this
paper are produced applying this acceleration method.

The algorithm is slightly modified in order to deal with the client groups.
New procedures are needed to calculate the bandwidth requirement of the de-
mands and to select a client group. In order to minimise the exponential bad-
ness, the algorithm tries to serve the clients belonging to the same group with
equal quality, that is, the difference between the index of the satisfied demands
is at most one in a client group. Each client in a group is served by the same
proxy and server in the present version. This restriction can be eliminated later
in order to improve the quality of the solution.

5. Results
The implemented incremental algorithm is tested on simulated network en-

vironments. The first test network has 50 nodes, 40 possible proxies, 30 clients
and 10 servers and the numbers of the components are increased proportionally
in the further networks in order to find out the size of the largest problem that
still can be solved, see Table 2. The test were running on a 1.2 GHz processor
with 384MB memory. The algorithm successfully solves problems not greater
than 500 nodes in less than 10 seconds.

Let us analyse how the cost of the solution is decreasing as the algorithm
examines newer and newer facilities or proxy-server pairs. Figures 1 show the
costs (exponential badnesses, numbers of rejected clients) as a function of the

170 DISTRIBUTED AND PARALLEL SYSTEMS

time elapsed from the start of the algorithm. In the second case, the algorithm
was stopped before finishing because it would be running too long.

Figure 1. The badness and the number of rejections as a function of the elapsed time process-
ing a network with 500 nodes, 100 servers, 400 possible proxies and 300 clients (above) and
with 1000 nodes, 200 servers, 800 possible proxies and 600 clients (below)

As we can see, first the cost starts falling quickly and later only slight im-
provements are achieved. If the quick response is a crucial point, this fact
makes worth realising intermediate solutions while the algorithm is running.

Incremental Placement of Nodes in a Large-Scale Adaptive … 171

Thus we can instantly start to deliver media to several clients and then gradu-
ally increase both the number of the served clients and the quality of the media
stream. In this way, we can give recommendation for problems even if the
running time for the optimal solution would be extremely long.

We tested how the program is able to manage clients groups. The initial
network consists of 50 nodes, 10 servers, 40 possible proxies and 300 clients.
In this case, each client group contains only a single client. Further networks
are created with 3000 and 30000 clients by increasing the size of the client
groups to 10 and 100, respectively, while the size of the network and the num-
ber of server components do not change. There is no significant change in the
running time as the size of the client groups increases, see Table 3.

At last, let us examine the quality of the solution. Using linear program-
ming, we can find a lower bound for the cost. The algorithm accepts each of
the requests in the network with 50 nodes. We find a lower bound of 7 for the
number of rejections in the case of 100 nodes and the incremental algorithm
generates a solution with 9 rejections. The exponential badnesses are 360 and
1152 in the two cases instead of the lower bound of 215 and 902, respectively.

6. Conclusions and Further Work
We examined an incremental algorithm for the configuration recommenda-

tion in a large-scale adaptive distributed multimedia server with huge number
of clients. The speed of the incremental algorithm, the continuous decrease
of the solution cost and the introduction of client groups enabled us to solve
large problems. Further development is needed to improve the quality of the
solution in order to decrease the number of the rejections and to improve the
quality of the delivered video.

References
[Goldschmidt et al., 2004] Goldschmidt, B., Szkaliczki, T., and Böszörményi, L (2004).

Placement of Nodes in an Adaptive Distributed Multimedia Server. Technical Report
TR/ITEC/04/2.06, Institute of Information Technology, Klagenfurt University, Klagenfurt,
Austria. http://143.205.180.128/Publications/pubfiles/pdffiles/2004-0005-BGAT.pdf.

[Qiu et al., 2001] Qiu, L., V.N., Padmanabhan, and G.M., Voelker (2001). On the placement of
web server replicas. In INFOCOM, pages 1587–1596.

172 DISTRIBUTED AND PARALLEL SYSTEMS

[Ramalingam and Reps, 1996] Ramalingam, G. and Reps, Thomas W. (1996). An incremental
algorithm for a generalization of the shortest-path problem. J. Algorithms, 21(2):267–305.

[Steen et al., 1999] Steen, M., Homburg, P., and Tannenbaum, A. S. (1999). Globe: A wide-
area distributed system. IEEE Concurrency.

[Tusch, 2003] Tusch, R. (2003). Towards an adaptive distributed multimedia streaming server
architecture based on service-oriented components. In Böszörményi, L. and Schojer, P., ed-
itors, Modular Programming Languages, JMLC 2003, LNCS 2789, pages 78–87. Springer.

[Tusch et al., 2004] Tusch, R., Böszörményi, L., Goldschmidt, B., Hellwagner, H., and Scho-
jer, P. (2004). Offensive and Defensive Adaptation in Distributed Multimedia Systems.
Computer Science and Information Systems (ComSIS), 1(1):49–77.

[Zanden, 1996] Zanden, B. Vander (1996). An incremental algorithm for satisfying hierar-
chies of multiway dataflow constraints. ACM Transactions on Programming Languages and
Systems, 18(1):30–72.

COMPONENT BASED FLIGHT SIMULATION IN
DIS SYSTEMS

Krzysztof Mieloszyk, Bogdan Wiszniewski
Faculty of Electronics, Telecommunications and Informatics
Gdansk University of Technology

krzymi@due.mech.pg.gda.pl, bowisz@eti.pg.gda.pl

Abstract Distributed interactive simulation constitutes an interesting class of information
systems, which combine several areas of computer science enabling each in-
dividual simulation object to visualize dynamic states of all distributed objects
participating in the simulation. Objects are unpredictable and must exchange
state information in order to correctly visualize a dynamic 3D scene from their
local perspectives. In the paper, a component based approach developed in the
ongoing project at GUT1, has been described; it can reduce the volume of state
information being exchanged without losing messages essential for reliable ex-
ecution of simulation scenarios.

Keywords: Distributed objects, remote state monitoring

Introduction

Distributed Interactive Simulation (DIS) systems form an important appli-
cation class of collaborative computing environments, in which many indepen-
dent and autonomous simulation objects, real objects and human operators are
connected to one computational framework. In may be for example a local
cluster of helicopter flight simulators in a lab with a group of real tanks oper-
ating in a remote shooting range, a city traffic simulation system where cars
and traffic lights are simulated but some intersections are operated by real po-
licemen, or a complex building on a simulated fire seen on computer screens
at the command center, and real firemen on a drill. Any such system performs
specific computations, which are unpredictable, have no algorithmic represen-
tation, and because of participating real objects, all events must be handled in
real-time despite of the system geographical distribution.

Objects participating in a simulation exercise are sending updates on their
local state to other objects in irregular intervals. If the updates were sent just
in periodic samples, a network supporting any realistic DIS system with many
objects would soon be overloaded. Moreover, increasing dynamics of reporting

174 DISTRIBUTED AND PARALLEL SYSTEMS

objects would imply higher sampling rate and would make the performance
problems even worse. Delayed (or lost) messages would certainly make any
visualization unrealistic. However, if a simulated object dynamics could be
estimated with some function of time, the number of messages to be sent would
be limited, since “new” states would be calculated by a receiving object instead
of sending them out by the reporting object.

This paper reports on the project started at TUG in 2002 and aimed at devel-
oping a DIS system with time-critical constraints, involving simulated flying
objects (helicopters) and ground vehicles (tanks) in a 3D space.

1. DIS system architecture
Any DIS system consists of simulators (called simulation objects), each one

designed to model a specific human operated device or vehicle. Any partic-
ular simulator may be operating in a distinct geographical location, and its
underlying operating system, software and hardware are usually incompatible
to other simulators, preventing direct interaction between them. In order to
create a collaborative computing environment a system architecture must en-
able integration of such objects (called active participants), and also provide
access for observers (called passive participants) with logging and monitoring
capabilities. Active participants exchange information to update one another
on their states as soon as they change. State updates sent by reporting objects
are needed by receiving objects to model a 3D global dynamic virtual scene
from their local perspectives. Passive observers usually limit their actions to
on-line state tracing and logging for future replay, evaluation of active partic-
ipants progress in a particular training scenario, as well as collecting data for
new training scenarios. A generic architecture of a DIS system is outlined in
Figure 1; it involves communication, service, and interaction layers, with dis-
tinct functionality and interfaces, marked with vertical arrows described further
on.

Figure 1. Distributed interactive system architecture

Component Based Flight Simulation in DIS Systems 175

Interaction layer. Human operator provides an external stimulus affecting
the internal state of a simulator. According to the semantics of the latter and its
current state a new state is determined, reported to the lower layer simulation
services, and broadcasted via the communication layer. State updates are re-
ceived at irregular intervals by simulation services of an interested participant
and passed to the visualizer component, which generates (modifies) its local
perspective of a global dynamic scene. Based on the view of moving objects
outside the cabin and a local state indicated by flight instruments inside the
cabin, a decision is made by the human operator (pilot) on the next stimulus
(maneuver).

Service layer. Simulation services provided by the service layer enable re-
duction of the volume of state update messages being sent over the system by
active participants. If the simulation object movement (state trajectory) can be
described with kinesthetic parameters like acceleration, speed, position, mass,
force, moment, etc., state prediction can be based on Newtonian rules of dy-
namics, using a technique known as dead reckoning [Lee2000]. States that can
be calculated based on the current reported state do not have to be sent out,
as the receiving participant can calculate them anyway. Further reduction of
the volume of state updates can be achieved by relevance filtering of messages
that are redundant with regard to some specific context of the scene, e.g. a
reporting object is far away and its movement will result in a pixel-size change
at a remote display.

Communication layer. The main job of the bottom layer shown in Figure 1
is to make the underlying network transparent to upper layers. Objects may
want to join and leave the simulation at any time, require reliable sending of
messages, and need time synchronization. This layer has no knowledge on the
semantics of data being sent by simulation objects but has knowledge about the
location of participants over the network. Two models of communication have
been implemented in the project reported in this paper: one with a dedicated
server and another with multicast [MKKK2003]. The former (server based)
enables lossless communication and make data filtering easier, but the cost is
that each message has to go through the server and a network load increases
when many participants work in the same local area network. The latter is
scalable, but requires implementation of dedicated transmission protocols on
top of the existing unreliable UDP protocol.

2. Component interaction model
Since simulation objects have to invoke specialized services of the com-

munication layer, rather then to communicate directly with each other. The
communication layer must implement a standard, system-wide functionality.

176 DISTRIBUTED AND PARALLEL SYSTEMS

For example, High Level Architecture (HLA) standard [HLA] requires de-
livery of such services as: federation management for creating, connecting,
disconnecting and destroying simulation objects in the system, time manage-
ment for controlling logical time advance and time-stamping of messages, and
declaration management for data posting and subscribing by simulation ob-
jects.

Reduction of the volume of data being sent by objects is achieved by a dead
reckoning technique, which basically extrapolates new position of an object
using its previous position and state parameters such as velocity or accelera-
tion. If object movements are not too complex, the amount of messages to be
sent can be significantly reduced [Lee2000] However, the method developed
in the reported project utilizes a notion of a semantics driven approach to mes-
sage filtering, based on maneuver detection, allowing for further reduction of
the space of states to be reported. This has been made possible by introducing
operational limits characterizing real (physical) objects (vehicles) [OW2003].
We will refer to this method briefly when presenting below another important
concept introduced in the reported project, which is component based simula-
tion.

In order to build and run a simulation system, the reported project required
simulators of various physical objects of interest. They had to be realistic in the
sense of their physical models, but allowing for easy configuration and scala-
bility of simulated vehicles. This has been achieved by adopting the concept
of a physical component shown in Figure 2a.

A component has its local state set initially to some predefined value.
Upon the external stimulus coming from the operator or other component its
new (resultant) state is calculated as where G represents a
state trajectory of the simulated component, given explicitly by a state func-
tion or implicitly by a state equation. Subvector of the resultant state is
reported outside to other components (locally) or other simulators (externally),
where F is a filtering function, selecting state vector elements relevant to other
components or simulators.

With such a generic representation a component may range from the body
with a mass, airfoil objects, like a wing, rotor or propeller, through various
types of engines generating power and momentum, up to undercarriage inter-
acting with a ground.

Simulation object

The main idea behind the component based approach is to divide a sim-
ulated object into most significant units, and then to simulate each one sep-
arately. This approach allows for flexibility, since simulators can be readily
reconfigured by changing parameters of a particular component (or by replac-

Component Based Flight Simulation in DIS Systems 177

Figure 2. Simulation object: (a) generic component (b) view of components (c) remote view

ing one with another), as well as parallelization, since components may run on
clusters if more detailed calculations are required.

With the external stimulus, the user can influence behavior of the compo-
nent work by changing some of its parameters. Reported state vector
can affect the state of other components of the simulation object. Based on all
states, control parameters and the semantics of a component, it is possible to
calculate the external state vector as an influence of the component on simu-
lated object. After combining all state vectors reported by components of the
simulation object, it is possible to define its resultant behavior.

Consider for example two cooperating components, an engine and a pro-
peller. In order to simulate correctly each component, local state vectors
of an engine and a propeller have over 10 elements, and over 15 elements re-
spectively. However, interaction between them can be modeled with just a
2-element vector consisting of a rotation velocity and torque. Similarly, a two
element state vector is sufficient to represent cooperation between a helicopter
rotor and an engine, despite that simulation of a rotor requires over 25-element
state vectors.

The general modeling technique is to describe a simulation object with a
graph, of which each single node corresponds to the respective component.
For each pair of nodes which can affect one another an arc is drawn and the
corresponding reported state vector associated. The size of reported state

178 DISTRIBUTED AND PARALLEL SYSTEMS

vectors attributed to individual arcs determine the real volume of data that have
to be exchanged between components during simulation. For simulation ob-
jects considered in the project, namely ground vehicles, single and twin rotor
helicopters, propeller and jet planes, and which may consist of the components
described below the size of reported state vectors never exceeded two. A
sample view of cooperating components of a simulated single rotor helicopter
is shown in Figure 2b

Wing. A wing has parameters which describe its dimension, fixing point to
the fuselage and the airfoil sections with characteristics combining lift and drag
with angle of attack. State of the wing can be affected by the arrangement of
ailerons and flaps, and its possible rotation along the longitudinal axis. In this
way it is possible to model both lifting and control surfaces of the wing. Addi-
tionally, by taking into consideration linear speed of the air stream or angular
speed of the wing, the resultant moment and force applied to the simulated
object can also be calculated.

Rotor. A helicopter rotor is the most complex component in the project, as
it is modeled with several rotating wings (blades). Its state vector elements in-
clude dimension of blades, their number, elasticity, induced speed of air flow,
airfoil section characteristics, blade fluctuations and angular speed. By chang-
ing parameters affecting the collective pitch and periodic pitch, the user (pi-
lot) can control the rotor in the same way as in a real helicopter [SN2002].
Reported state vector consists of the resultant forces and moments cal-
culated at over a dozen points evenly distributed over a rotor disk. It is also
necessary to consider torque, which is required to determine correctly the state
of the entire power transmission system.

Propeller. This component is a simplified version of a helicopter rotor,
based on the same semantics and parameters. Elasticity and fluctuations of
blades are neglected in calculating of but the parameter describing the
collective pitch setting is added. The internal state vector of a propeller is the
same as in the rotor component.

Engine. This component supports the semantics of both, a jet turbine and
a piston engine. Including the internal state vector describing angular speed,
working temperature and the maximum power, the user can control its behavior
by setting up a throttle. Calculation of the reported state vector requires
gathering torque values of all attached components, like a propeller or rotor,
to calculate the resulting angular speed for the entire power transmission unit
taking into account its inertia.

Component Based Flight Simulation in DIS Systems 179

Undercarriage. It is the only component that allows the simulated object to
interact with a ground. The internal state vector describes the radius of a tire,
shock-absorber lead, and its elasticity, as well as speed of the entire plane, and
the relative location of the undercarriage with regard to the plane (helicopter)
body. This component has its semantics, defined by a characteristic describing
interaction patterns between the tire and the absorber during the contact with a
ground. By changing the angle of turn of the wheel and the braking factor, it
is possible to control the traction over the runway. As with other components,
the reported state vector describes the moment and the reaction force of
the ground applied through the undercarriage to the simulated object body.

Remote object interaction

As mentioned before any simulation object in a DIS system sends out up-
dates on its state changes to enable other (remote) objects to calculate its po-
sition in global scene from the local perspective of each one. The volume of
messages is reduced by adopting a dead reckoning scheme, allowing calcu-
lation of some “future” states based on current states. While dead reckoning
applies mostly to calculating trajectories of moving objects, further reduction
of the volume of information being sent is possible based on specific relation-
ships between various elements of the material object state vector. A sample
view of a remote object’s state (a helicopter) from the local perspective of an-
other object (also a helicopter) is shown in Figure 2c

Active participants. State vector reported by each component locally
may allow a certain degree of redundancy, depending on the specific internal
details of the simulation object. However, the reported state (update) sent out
to remote objects must use a state vector in a standard form. In the current
implementation it consists of position orientation linear velocity linear
acceleration angular velocity angular acceleration resultant force
and resultant moment In a properly initiated simulation system, where
each receiver (observer) has once got full information about each participant,
for objects associated with decision events (maneuvers initiated by their human
operators) only changes in their acceleration are needed [OW2003].

Passive participants. State prediction is less critical for passive partici-
pants, as they do not interact (in the sense of providing a stimulus) with other
objects. They do not have any physical interpretation and there is no need to
inform users about their existence in a system. They may be independent 3D
observers, like a hot-air balloon, or a 2D radar screen, or a map with points
moving on it. Their only functionality is monitoring and/or logging the traffic
of state update messages. In a DIS system implemented in the project a logger
has been introduced. Based on the recorded log entries it can create simulation

180 DISTRIBUTED AND PARALLEL SYSTEMS

scenarios, which can be next edited, modified and replayed in the system. In
that particular case the logger may temporarily become an active participant.

Human operator

In order to implement any realistic DIS scenario involving “material” ob-
jects two problems must be solved. One is state predictability, important from
the point of view of the volume of state update messages, and another is object
ability to perform maneuvers within specific limits imposed by its operational
characteristics. Each object having a mass and characterized with kinesthetic
parameters behaves according to the Newtonian laws of dynamics. Classes
of behavior that such a material object may exhibit are described by basic
equations combining these parameters (function Such a form of ob-
ject representation, although true from the point of view of physics is far too
detailed from the point of view of simulating exercises with real flying objects
controlled by humans. It has been argued [OW2003] that by introducing the
notion of a maneuver and operational characteristics of simulation objects, the
space of possible states to be considered can be significantly reduced. In con-
sequence, there are less states to predict and the flow of state update messages
can be reduced further.

State predictability. The “logic” of flight may be described with a simple
automaton involving just five states representing human operator (pilot). The
basic state of a flying object is neutral, i.e. it remains still or is in a uniform
straight line motion. According to the first Newton’s law of dynamics both
linear and angular accelerations are zero, while the linear velocity is constant.
An object in a neutral state may start entering a new maneuver and keep doing
it as long as its linear or angular acceleration vary. This may eventually lead to
a stable state, which is the actual maneuver; in that case both linear and angular
acceleration vectors of the object are constant and at least one of them must be
non-zero. Any subsequent increase or decrease of any of these acceleration
vectors implies further entering or exiting a maneuver. Exiting a maneuver
may end up with entering another maneuver or returning to a neutral state.
There is also a crash state, when at least one of the object parameters exceeds
its allowed limits, e.g. exceeding a structural speed of the airplane ends-up with
its disintegration. It found out in the project, practically each state transition
of the automaton described above can be detected just by tracing changes of
angular or linear acceleration.

Operational characteristics. All components described before has realistic
operational limits, usually listed in the user’s manual of the simulated object.
The mass may vary, but stay between some minimum (empty) and maximum
(loaded) values. There are several speeds characterizing a flying object, e.g.

Component Based Flight Simulation in DIS Systems 181

for planes it is the minimum (stall) speed for each possible configuration (flaps
up or down, landing gear up or down), maximum maneuvering speed to use in
maneuvers or turbulent air, and maximum structural speed not to be exceeded
even in a still air. Resultant lift and drag forces for the wing are the function
of the airflow speed and angle of attack, which may change up to the critical
(stall) angle, specific to a given profile. Finally thrust is a function of engine
RPMs, which may change within a strictly defined range of [min,max] values.
Based on these parameters, and a maneuver “semantics” described before, it
is possible to calculate (predict) most of the in-flight states intended by the
human operator, excluding only random and drastic state changes such as mid-
air collision or self-inflicted explosion.

3. Summary

In the current experimental DIS application three classes of simulation ob-
jects have been implemented using components described in the paper: a tank,
a light propeller airplane, and two kinds of helicopters, with single or twin ro-
tors. The notion of a generic component introduced in Figure 2a proved to be
very useful. Current development is aimed at expanding the concept of compo-
nents on vessels, which besides a propeller-like component and engine, require
a body model, simple enough to avoid complex computations but precise to de-
scribe interactions between the hull and surrounding water.

Notes

Funded by the State Committee for Scientific Research (KBN) under grant T-11C-004-221.

References

[SN2002] Seddon J. and Newman S. (2002). Basic Helicopter Aerodynamics Masterson Book
Services Ltd.

[HLA] DoD. High Level Architecture interface specification. IEEE P1516.1, Version 1.3.
http://hla.dmso.mil.

[Lee2000] Lee B.S., Cai W., Tirner S.J., and Chen L. (2000). Adaptive dead reckoning algo-
rithms for distributed interactive simulation. I. J. of Simulation, 1(1-2):21–34.

[MKKK2003] Mieloszyk K., Kozlowski S., Kuklinski R., and Kwoska A. (2003). Architec-
tural design document of a distributed interactive simulation system KBN-DIS (in Polish).
Technical Report 17, Faculty of ETI, GUT.

[OW2003] Orlowski T. and Wiszniewski B. (2003). Stepwise development of distributed inter-

active simulation systems. In Proc. Int. Conf. Parallel and Applied Mathematics, PPAM03,
LNCS, Springer Verlag, to appear.

This page intentionally left blank

VI

ALGORITHMS

This page intentionally left blank

MANAGEMENT OF COMMUNICATION
ENVIRONMENTS FOR MINIMALLY
SYNCHRONOUS PARALLEL ML

Frédéric Loulergue
Laboratory of Algorithms, Complexity and Logic, Créteil, France

Ioulergue@univ-paris12.fr

Abstract Minimally Synchronous Parallel ML is a functional parallel language whose
execution time can then be estimated and dead-locks and indeterminism are
avoided. Programs are written as usual ML programs but using a small set of
additional functions. Provided functions are used to access the parameters of the
parallel machine and to create and operate on a parallel data structure. It follows
the cost model of the Message Passing Machine model (MPM).

In the current implementation, the asynchrony is limited by a parameter
called the asynchrony depth. When processes reach this depth a global syn-
chronization occurs. This is necessary to avoid memory leak. In this paper we
propose another mechanism to avoid such synchronization barriers.

1. Introduction
Bulk Synchronous Parallel (BSP) computing, and the Coarse-Grained Mul-

ticomputer model, CGM, which can be seen as a special case of the BSP model,
have been used for a large variety of domains [4], and are currently widely used
in the research on parallel algorithms. The main advantages of the BSP model
are: deadlocks avoidance, indeterminism can be either avoided or restricted to
very specific cases ; portability and performance predictability.

The global synchronizations of the BSP model make many practical MPI
[18] parallel programs hardly expressible using the BSPlib library. This is why
some authors proposed [16] the BSP without barrier and the Message Passing
Machine (MPM) model. We decided to investigate the semantics of a new
functional parallel language, without synchronization barriers, called Mini-
mally Synchronous Parallel ML (MSPML) [14]. As a first phase we aimed at
having (almost) the same source language and high level semantics (program-
mer’s view) than Bulk Synchronous Parallel ML [12], a functional language
for Bulk Synchronous Parallelism (in particular to be able to use with MSPML

186 DISTRIBUTED AND PARALLEL SYSTEMS

work done on proof of parallel BSML programs with the Coq proof assistant),
but with a different (and more efficient for unbalanced programs) low-level
semantics and implementation.

Due to the asynchronous nature of MSPML, storage of values, which may
be requested by processors in the future, is needed in communication environ-
ments. For a realistic implementation the size of these communications envi-
ronments should be of course bounded. This makes the emptying of the com-
munications environments necessary when they are full. This paper presents
two solutions for this problem.

We first present informally MSPML (section 2). Then (section 3) we give
the mechanism to empty the communication environments. We end with re-
lated work, conclusions and future work (sections 4 and 5).

2. Minimally Synchronous Parallel ML

Bulk Synchronous Parallel (BSP) computing is a parallel programming
model introduced by Valiant [17] to offer a high degree of abstraction in the
same way as PRAM models and yet allow portable and predictable perfor-
mance on a wide variety of architectures. A BSP computer is a homogeneous
distributed memory machine with a global synchronization unit which executes
collective requests for a synchronization barrier.

The BSP execution model represents a parallel computation on processors
as an alternating sequence of computation super-steps and communications
super-steps with global synchronization. BSPWB, for BSP Without Barrier,
is a model directly inspired by the BSP model. It proposes to replace the
notion of super-step by the notion of m-step defined as: at each m-step, each
process performs a sequential computation phase then a communication phase.
During this communication phase the processes exchange the data they need
for the next m-step. The parallel machine in this model is characterized by
three parameters (expressed as multiples of the processors speed): the number
of processes the latency L of the network, the time which is taken to one
word to be exchanged between two processes. This model could be applied to
MSPML but it will be not accurate enough because the bounds used in the cost
model are too coarse.

A better bound is given by the Message Passing Machine (MPM) model
[16]. The parameters of the Message Passing Machine are the same than those
of the BSPWB model but the MPM model takes into account that a process
only synchronizes with each of its incoming partners and is therefore more
accurate (the cost model is omitted here). The MPM model is used as the exe-
cution and cost model for our Minimally Synchronous Parallel ML language.

There is no implementation of a full Minimally Synchronous Parallel ML
(MSPML) language but rather a partial implementation as a library for the

Management of Communication Environments for MSPML 187

functional programming language Objective Caml [11]. The so-called MSPML
library is based on the following elements:

It gives access to the parameters of the underling architecture which is con-
sidered as a Message Passing Machine (MPM). In particular, it offers the func-
tion p such that the value of p() is the static number of processes of the
parallel machine. The value of this variable does not change during execution.
There is also an abstract polymorphic type par which represents the type of

parallel vectors of objects of type one per process. The nesting of
par types is prohibited. This can be ensured by a type system [5].

The parallel constructs of MSPML operate on parallel vectors. A MSPML
program can be seen as a sequential program on this parallel data structure and
is thus very different from the SPMD paradigm (of course the implementa-
tion of the library is done in SPMD style). Those parallel vectors are created
by mkpar, so that (mkpar f) stores (f i) on process for between 0 and

We usually write fun pid e for f to show that the expression e may
be different on each process. This expression e is said to be local. The ex-
pression (mkpar f) is a parallel object and it is said to be global. For example
the expression mkpar(fun pid pid) will be evaluated to the parallel vector

In the MPM model, an algorithm is expressed as a combination of asyn-
chronous local computations and phases of communication. Asynchronous
phases are programmed with mkpar and with apply.

It is such as apply (mkpar f) (mkpar e) stores (f i) (e i) on process
The communication phases are expressed by get and mget. The semantics

of get is given by the following equation where % is the modulo:

The mget function is a generalization which allows to request data from
several processes during the same m-step and to deliver different messages to
different processes. It is omitted here for the sake of conciseness (as well as
the global conditional).

A MSPML program is correct only if each process performs the same over-
all number of m-steps, thus the same number of calls to get (or mget). Incorrect
programs could be written when nested parallelism is used. This is why it is
currently forbidden (a type system can enforce this restriction [5]).

Some useful functions can be defined using the primitives. This set of func-
tions constitutes the standard MSPML library (http://mspml.free.fr). For ex-
ample, the direct broadcast function which realizes a broadcast can be written:

188 DISTRIBUTED AND PARALLEL SYSTEMS

The semantics of bcast is: bcast

3. Management of Communication Environments

To explain how the communication environments could be emptied, the low-
level semantics of MSPML should be presented.

During the execution of and MSPML program, at each process the system
has a variable containing the number of the current m-step. Each time
the expression get vv vi is evaluated, at a given process

is increased by one.

the value this process holds in parallel vector vv is stored together with
the value of in the communication environment. A communica-
tion environment can be seen as an association list which relates m-step
numbers with values.

the value this process holds in parallel vector vi is the process number
from which the process wants to receive a value. Thus process sends
a request to process it asks for the value at m-step When
process receives the request (threads are dedicated to handle requests,
so the work of process is not interrupted by the request), there are two
cases:

1

2

3

it means that process has already reached
the same m-step than process Thus process looks in its commu-
nication environment for the value associated with m-step
and sends it to process

nothing can be done until process reaches
the same m-step than process

If the step 2 is of course not performed.
In a real implementation of MSPML, the size of the communication envi-

ronment is of course limited. It is necessary to provide the runtime system a
parameter called the asynchrony depth. This value, called mstepmax, is the
size of the communication environment in terms of number of values it can
store (number of m-steps). The implementation of communication environ-
ments are arrays com_env of size mstepmax, each element of the array being
a kind of pointer to the serialized value stored at the m-step whose number is
the array index.

A problem arises when the communication environments are full. When
the array at one process is filled then the process must wait because it cannot
proceed the next m-step. When all the communication environments are full, a
global synchronization occurs and the arrays are emptied. The m-step counter
is also reset to its initial value.

Management of Communication Environments for MSPML 189

The advantage of this method is its simplicity. Nevertheless it could be in-
efficient in terms of memory but also in terms of execution time since a global
synchronization is needed. Note that it is not only due to the communication
cost of the synchronization barrier which is (please see defini-
tions in section 2) for each process but also to the fact that a globally balanced
program but always locally imbalanced (which means that the communication
steps never occur at the same time) could lose a lot of efficiency. Thus another
mechanism could be proposed.

In order to avoid the waste of memory, each process should free the use-
less values stored in its communication environment. These useless values are
those whose associated m-step (the index in the array) is lower than the m-step
counter of each process, or to say it differently lower than the smallest m-step
counter.

Of course this information cannot be updated at each m-step without per-
forming a global synchronization, but it can be updated when a communication
occur between two processes. These processes could exchange their knowl-
edge of the current state of the other processes. To do so, each process has
in addition to its com_env array of size mstepmax and to its m-step counter
mstep: a value mstepmin, the smallest known m-step counter.

The com_env array is now a kind of queue. If mstep – mstepmin
mstepmax then there is still enough room to add a value in the communi-
cation environment at index mstep%mstepmax. The problem now is to
update the value mstepmin.

This can be done using an array msteps of size the last known m-step
counters, the value of msteps at index at process being unused (if used it
should be the value mstep). Without changing the data exchanged for per-
forming a get, each time a process requests a value from a process it sends
its mstep value. This value is put in the array msteps of process at index

When the process answers, knows that has at least reached the same
m-step as itself and it can update its array msteps at index

The new value of mstepmin, which is the minimum of the values of the ar-
ray msteps, could be computed only when needed, ie when the array com_env
is full, or could be computed each time a value is changed in the array msteps.
In the former case there may be a waste of memory, but in the latter case there
is a small overhead for the computation of the new value.

As an example we could have a MSPML program in which we evaluate
(bcast 0 vec) on a 3-processors machine. At the beginning each processor has
the following msteps array: (here we use at process the value
at index After the first get is done, the msteps arrays are:

190 DISTRIBUTED AND PARALLEL SYSTEMS

In fact, at the first m-step, process 0 has no communication request to do,
so it may reach the m-step number 1 before the communications are done with
the two other processes. So at process 0, the msteps array is more likely to be:

In both cases the first cell of the com_env array at process 0 could
be freed.

To increase the updating of the mstepmin value, we can change the data
exchanged during a get. When a process answers to a request from a process

it could send the answer plus its mstep value to process which updates its
array msteps at index

In the previous example, assuming process 0 reached m-step number 1 be-
fore the communications are done with the two other processes, we would
have:

It is also possible to exchange a subpart of the arrays msteps during a get
to improve the updating of mstepmin. To do so we can keep a fixed number
of process identifiers for which the information has the most recently been
updated. In the previous example, assuming we keep only one identifier of
the most recently updated process and that the request from process 1 arrives
at process 0 before the request from process 2 we would have msteps[1] = 0
at process 2. With this solution the first cell of the com_env environment at
process 2 could be freed also after the first m-step.

Unfortunately these various protocols have a flaw: if one processor does not
communicate at all with the remaining of the parallel machine, its mstepmin
value will never be updated and this process will be blocked as soon as its
communication environment will be full. The solution to avoid deadlock is that
each time a process is blocked because of a full communication environment,
then it will request, after some delay, the value of mstep from one or several
other processes. This could be from only one processor at random, or from all
the processes. The former case decrease the chance to obtain a new value for
mstepmin but the latter is of course more costly.

We performed some experiments corresponding to the various versions pre-
sented in the examples [13]. Even when a reasonable subpart of msteps is
exchanged, the overhead is very small. Thus usually this would be more in-
teresting to use this protocol than to empty the communication environments
after a global synchronization barrier.

4. Comparison to Related Work

Caml-flight, a functional parallel language [3], relies on the wave mecha-
nism. A sync primitive is used to indicated which processes could exchange
messages using a get primitive which is very different from ours: this primitive
asks the remote evaluation of an expression given as argument. This mecha-

Management of Communication Environments for MSPML 191

nism is more complex than ours and there is no pure functional high level se-
mantics for Caml-flight, Moreover Caml-flight programs are SPMD programs
which are more difficult to write and read. The environments used could store

values at each step. An asynchrony depth is also used in Caml-Flight but
it should usually be much smaller than in MSPML.

There are several works on extension of the BSPlib library or libraries to
avoid synchronization barrier (for example [10]) which rely on different kind
of messages counting. To our knowledge the only extension to the BSPlib stan-
dard which offers zero-cost synchronization barriers and which is available for
downloading is the PUB library [2]. The bsp_oblsync function takes as ar-
gument the number of messages which should be received before the super-
step could end. This is of course less expensive than a synchronization barrier
but it is also less flexible (the number of messages have to be known). With
this oblivious synchronization, two processes could be at different super-steps.
Two kind of communications are possible: to send a value (either in message-
passing style or in direct remote memory access, or DRMA, style) or to request
a value (in DRMA style). In the former case, the process which done more
super-steps could send a value (using bsp_put or bsp_send) to the other pro-
cess. This message is then stored in a queue at the destination. In the latter case
the PUB documentation indicates that a bsp_get produces “a communication”
both at the process which requests the value and the process which receives
the request. Thus it is impossible in this case that the two processes are not
in the same super-step. MSPML being a functional language, this kind of put-
like communication is not possible. But the get communication of MSPML is
more flexible than PUB’s one.

The careful management of memory is also very important in distributed
languages where references to remote values or objects can exist. There are
many distributed garbage collection techniques [9, 15]. They could be hardly
compared to our mechanism since there are no such references in MSPML. The
management of the communication environments is completely independent
from the (local) garbage collection of Objective Caml: the values put by a
get operation are copied in the communication environments making safe the
collection, at any time, of these values by the GC.

5. Conclusions and Future Work
There are several ways to manage the communication environments of Min-

imally Synchronous Parallel ML. In most cases a small additional exchange of
information during each communication provide the best overall solution, both
in term of memory usage and time.

We will prove the correctness of the presented mechanism using Abstract
State Machines [7] by modeling the get operation with communicating evolv-

192 DISTRIBUTED AND PARALLEL SYSTEMS

ing algebras [6]. The properties will be expressed using First Order Timed
Logic [1] and the verification will be automated using model checking tools.

We also will perform more experiments, especially with applications rather
than examples. In particular we will further investigate the implementation
of the Diffusion algorithmic skeleton [8, 14] using MSPML and applications
implemented using this algorithmic skeleton.

References

D. Beauquier and A. Slissenko. A first order logic for specification of timed algorithms:
basic properties and a decidable class. Annals of Pure and Applied Logic, 113, 2002.

O. Bonorden, B. Juurlink, I. von Otte, and O. Rieping. The Paderborn University BSP
(PUB) library. Parallel Computing, 29(2): 187–207, 2003.

E. Chailloux and C. Foisy. A Portable Implementation for Objective Caml Flight. Parallel
Processing Letters, 13(3):425–436, 2003.

F. Dehne. Special issue on coarse-grained parallel algorithms. Algorithmica, 14, 1999.

F. Gava and F. Loulergue. A Polymorphic Type System for Bulk Synchronous Parallel
ML. In PaCT 2003, number 2763 in LNCS, pp. 215–229. Springer, 2003.

P. Glavan and D. Rosenzweig. Communicating Evolving Algebras. In Computer Science
Logic, number 702 in LNCS, pp. 182–215. Springer, 1993.

Y. Gurevich. Evolving Algebras 1993: Lipari Guide. In Specification and Validation Meth-
ods, pp. 9–36. Oxford University Press, 1995.

Z. Hu, H. Iwasaki, and M. Takeichi. An accumulative parallel skeleton for all. In European
Symposium on Programming, number 2305 in LNCS, pp. 83–97. Springer, 2002.

R. Jones. Garbage Collection: algorithms for automatic dynamic memory management.
Wiley, 1999.

Jin-Soo Kim, Soonhoi Ha, and Chu Shik Jhon. Relaxed barrier synchronization for the
BSP model of computation on message-passing architectures. Information Processing
Letters, 66(5):247–253, 1998.

Xavier Leroy. The Objective Caml System 3.07, 2003. web pp. at www.ocaml.org.

F. Loulergue. Implementation of a Functional Bulk Synchronous Parallel Programming
Library. In 14th IASTED PDCS Conference, pp. 452–457. ACTA Press, 2002.

F. Loulergue. Management of Communication Environments for Minimally Synchronous
Parallel ML. Technical Report 2004-06, University of Paris 12, LACL, 2004.

F. Loulergue, F. Gava, M. Arapinis, and F. Dabrowski. Semantics and Implementation of
Minimally Synchronous Parallel ML. International Journal of Computer & Information
Science, 2004. to appear.

David Plainfossé and Marc Shapiro. A survey of distributed garbage collection techniques.
In Proc. Int. Workshop on Memory Management, 1995.

J. L. Roda, C. Rodríguez, D. G. Morales, and F. Almeida. Predicting the execution time of
message passing models. Concurrency: Practice and Experience, 11(9):461–477, 1999.

D. B. Skillicorn, J. M. D. Hill, and W. F. McColl. Questions and Answers about BSP.
Scientific Programming, 6(3):249–274, 1997.

M. Snir andW. Gropp. MPI the Complete Reference. MIT Press, 1998.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

ANALYSIS OF THE MULTI-PHASE COPYING
GARBAGE COLLECTION ALGORITHM

Norbert Podhorszki
MTA SZTAKI
H-1518 Budapest, P.O.Box 63

pnorbert@sztaki.hu

Abstract The multi-phase copying garbage collection was designed to avoid the need for
large amount of reserved memory usually required for the copying types of
garbage collection algorithms. The collection is performed in multiple phases
using the available free memory. The number of phases depends on the size of
the reserved memory and the ratio of the garbage and accessible objects.

Keywords: Garbage collection, logic programming.

Introduction

In the execution of logic programming languages, a logic variable can have
only one value during its existence, after its instantiation it cannot be changed.
Therefore, new values cannot be stored in the same memory area. Thus, the
memory consumption speed is very high and much smaller problems can be
solved with declarative languages than with procedural ones. Garbage collec-
tion is a very important procedure in logic programming systems to look for
memory cells that are allocated but not used (referenced) any more. Since the
late 50’s many garbage collection algorithms have been proposed, see classifi-
cations of them in [1][6]. The classical copying garbage collection [2] method
provides a very fast one-phase collection algorithm but its main disadvantage is
that the half of the memory is reserved for the algorithm. During the execution
of an application, in every moment, the number of all accessible objects on a
processing element must be less than the available memory for storing them.
Otherwise, the system fails whether garbage collector is implemented or not.
If the classical copying collector allocates the half of the memory for own use,
applications may not be executed. To decrease the size of the reserved area, a
multi-phase copying garbage collection (MC-GC) algorithm was presented in
[4]. It has been implemented in LOGFLOW [3], a fine-grained dataflow sys-
tem for executing Prolog programs on distributed systems. In this paper, the

194 DISTRIBUTED AND PARALLEL SYSTEMS

MC-GC algorithm is analysed giving its cost and the number of phases as a
function of the size of the reserved area and the ratio of garbage and accessible
memory areas. A short description of the multi-phase copying garbage collec-
tion algorithm can be found in Section 1. The costs and the number of phases
of the algorithm is analysed in Section 2.

1. Multi-Phase Copying Garbage Collection Algorithm

The MC-GC algorithm splits the memory area to be collected into two parts,
the Copy and the Counting area, see Figure 1. The size of the Copy area
is chosen as large as possible but ensuring that all accessible objects can be
moved into the available Free area. The Free area is the reserved memory area
at the beginning and by not knowing the number of accessible objects in the
memory, the size of the Copy area equals to the size of the Free area. In the
first phase, see Figure 2, when traversing the references, objects stored in the
Copy area are moved to the Free area, while objects in the Counting area are
just marked (counted). At the end of the phase, the moved objects are moved
to their final place at the beginning of the memory (the references are already
set to this final place at the traversal).

Figure 1. MC-GC algorithm, starting

In the forthcoming phases, see Figure 3, the Counting area of the previous
phase should be collected. Knowing now the number of objects in this area,
the Copy area can be chosen larger than the available Free memory (which
has become also larger because garbage occupying the previous Copy area are
freed now). In other aspects, the algorithm is the same in all phases. The
algorithm repeats the phases until the whole memory is collected.

The main advantage of MC-GC is the efficiency: it provides a sufficiently
fast collector, all garbage is thrown away and a continuous memory can be used
by the application without the overhead of any special memory management.

Analysis of the Multi-Phase Copying Garbage Collection Algorithm 195

Figure 2. MC-GC algorithm, phase 1. The dashed arrows at Reference indicate the real
movement of an object while the solid arrows indicate the settings of its references

Figure 3. MC-GC algorithm, further phases

2. Analysis of the algorithm

Let us denote

number of accessible objects in the memory
number of inaccessible objects (i.e. garbage)
number of references all together, where

is the number of references to different objects +
is the number of other references

the cost of copying an object in the memory
the cost for updating a reference
the cost of checking/traversing the reference

The is the cost of reading the value of a reference and reading the
memory of the object that is referenced. The is the additional cost of
updating the reference, that is, writing the new address into the reference.

The original copying garbage collection algorithm traverses all references
once and moves the accessed objects once in the memory while updating the
reference to it as well. That is, the algorithm’s cost function is:

196 DISTRIBUTED AND PARALLEL SYSTEMS

To determine the cost of the MC-GC algorithm, let us denote

the copying area of the memory in phase N
the counting area of the memory in phase N
number of references that point into the area which becomes the
copying area in the Nth phase of the algorithm
number of references to different objects (from
number of references to different objects in counting area of phase N
cost of counting (updating a counter)
cost of copying one large memory block of phase N

When a reference is accessed in MC-GC, one of the following operations
is performed: the referenced object is in the copying area and is moved thus,
the reference is updated (cost the referenced object is in the counting
area and thus, the reference is counted (cost the referenced object
has been already moved in previous phases and thus, nothing is done to the
reference. In all of the three cases, however, the reference has been checked /
traversed, so this operation has also some cost

First, let us determine the steps of the algorithm in phase Objects in the
area are copied into the free area All references

pointing into are updated and all references point-
ing into are counted (but one object only once)
Additionally, all references are checked. At the end of the phase, the contigu-
ous area of the copied objects is moved with one block copy to the final place
of the objects

For simplicity, let us consider that the costs of block copies are identical, i.e.
The cost of the MC-GC algorithm is the

sum of all phases, from 1 to N:

The copying areas cover the whole memory exactly once
thus, and

Analysis of the Multi-Phase Copying Garbage Collection Algorithm 197

Without knowing the sizes of each counting area, the value of
cannot be calculated. An upper estimate is given in [5]:

Thus, the cost of the algorithm is

The final equation shows, that each object is copied once and all references
are updated once as in the original copying garbage collection algorithm. How-
ever, the references have to be checked once in each phase, i.e. N times if there
are N phases. Additional costs to the original algorithm are the counting of ref-
erences and the N memory block copies. The number of phases is analysed in
the next section.

Number of phases in the MC-GC algorithm
Intuitively, it can be seen that the number of phases in this algorithm depends

on the size of the reserved area and the ratio of the accessible and garbage
cells. Therefore, we are looking for an equation where the number of phases
is expressed as a function of these two parameters. The MC-GC algorithm
performs N phases of collections until the area becomes empty.
To determine the number of phases in the algorithm, we focus on the size of

area and try to determine, when it becomes zero.
Note, that the first phase of the algorithm is different from other phases in

that the size of the Copy area equals to the Free area while in other phases it
can become larger than the actual size of the Free area. It is ensured that the
number of the accessible cells in the Copy area equals to the size of the Free
area but the Copy area contains garbage cells as well. Therefore, we need to
consider the first and other phases separately in the deduction. Let us denote

number of all cells (size of the memory)
number of free cells in phase N (i.e. size of the Free area)
number of accessible cells in area in phase N
number of garbage cells in area in phase N
i.e. size of
number of cells in area in phase N

The size of the area is the whole memory without the free
area: When the first phase is finished, the accessible cells of

are moved into their final place. The size of the free area in
the next phase is determined by the algorithm somehow and thus, the

area is the whole memory except the moved cells and the current
Free area From the second phase, in each step, the
area is the whole memory except all the moved cells and
the current Free area

198 DISTRIBUTED AND PARALLEL SYSTEMS

At each phase (except the first one) the algorithm chooses as large Copy area
as possible, that is, it ensures that the accessible cells in the area
is less or equal to the size of the free area The equality or inequality
depends on the quality of the counting in the previous phase only. Let us
suppose that the equality holds: Thus we get, that the size
of the area is

We can see from the above equation that the size of the working area de-
pends from the sizes of the free areas of all phases. Let us turn now to the
determination of the size of the free area in each step. At start, the size of
the copying area is chosen to be equal to the size of the reserved free
area that is equals to the number of the accessible cells plus the
garbage cells in The free area in the
second phase is the previous free area plus what becomes free from
the area. The latter one equals to the number of garbage cells of

The same holds for the free areas in all further phases. Thus,

Let us consider the ratio of the garbage and accessible cells in the memory
to be able to reason further. Let us denote

the ratio of garbage and accessible cells in the memory;
means that there is no garbage at all,

would mean that there are no accessible cells.

Note that the case of is excluded because there will be a division by
in the following equations. The case of means that there is only

garbage in the memory and no accessible cells. This is the best case for the
algorithm and the number of phases is always 2 independently from the size
of the memory and the reserved area (without actually copying a single cell or
updating a single reference).

Let us suppose that the accessible cells and the garbage cells are spread in
the memory homogenously, that is, for all part of memory, the ratio of garbage
and accessible cells is We need to express and as a function of
and and thus be able to express as a function of and the ratio

At the beginning, the size of area equals to the size of the
area, The ratio of garbage and accessible cells in

Analysis of the Multi-Phase Copying Garbage Collection Algorithm 199

area is by our assumption. Thus, From the second
phase, the size of accessible cells in the area equals to the size of
the area The ratio of and is again by our assumption.
Thus,

The size of the garbage in each phase is now expressed as a function of
We need to express as a function of to finish our reasoning. By

equations 7 and 8 and by recursion on

Finally, we express as the function of and the ratio of the garbage
and accessible cells, that is, equation 6 can be expressed as (expressing as

Corollary. For a given size of the reserved area (F1) and a given ratio of
garbage and accessible cells (r) in the memory, the MC-GC algorithm performs
N phases of collection if and only if and

The worst case for copying garbage collection algorithms is that when there
is no garbage, that is, all objects (cells) in the memory are accessible and should
be kept. In the equations above, the worst case means that From
equation 9, and thus from equation 10, As a
consequence, to ensure that at most N phases of collections are performed by
MC-GC independently from the amount of garbage, the size of the reserved
area should be 1/N +1 part of the available memory size. If we reserve half of
the memory we get the original copying collection algorithm, performing the

200 DISTRIBUTED AND PARALLEL SYSTEMS

garbage collection in one single phase. If we reserve 1/3 part of memory, at
most two phases are performed.

In the general case, the equation 10 is too complex to see immediately, how
many phases are performed for a given and If half of the memory contains
garbage 1/5 of the memory is enough to reserve to have at most two
phases. Very frequently, the ratio of garbage is even higher (80-90%) and
according to the equation 10% reserved memory is enough to have at most two
phases. In practice, with 10% reserved memory the number of phases varies
between 2 and 4, according to the actual garbage ratio. In the LOGFLOW
system, the MC-GC algorithm performs well, resulting 10-15% slowdown in
the execution in the worst case and usually between 2-5%.

3. Conclusion

The Multi-Phase Copying Garbage Collection algorithm belongs to the copy-
ing type of garbage collection techniques. However, it does not need the half
of the memory as a reserved area. Knowing the ratio of the garbage and acces-
sible objects in a system, and by setting a limit on the number of phases and the
cost of the algorithm, the size of the required reserved area can be computed.
The algorithm can be used in systems where the order of objects in memory is
not important and the whole memory is equally accessible. A modification of
the algorithm for virtual memory using memory pages can be found in [5].

References

[1]

[2]

[3]

[4]

[5]

[6]

J. Cohen: Garbage Collection of Linked Data Structures. Computing Surveys, Vol. 13, No.
3, September 1981.

R. Fenichel, J. Yochelson: A LISP garbage collector for virtual memory computer systems.
Communications of ACM, Vol. 12, No. 11, 611-612, Nov. 1969.

P. Kacsuk: Execution models for a Massively Parallel Prolog Implementation. Journal of
Computers and Artifical Intelligence. Slovak Academy of Sciences, Vol. 17, No. 4, 1998,
pp. 337-364 (part 1) and Vol. 18, No. 2, 1999, pp. 113-138 (part 2)

N. Podhorszki: Multi-Phase Copying Garbage Collection in LOGFLOW. In: Parallelism
and Implementation of Logic and Constraint Logic Programming, Ines de Castro Dutra et
al. (eds.), pp. 229-252. Nova Science Publishers, ISBN 1-56072-673-3, 1999.

N. Podhorszki: Performance Issues of Message-Passing Parallel Systems. PhD Thesis,
ELTE University of Budapest, 2004.

P. R. Wilson: Uniprocessor Garbage Collection Techniques. Proc. of the 1992 Intl. Work-
shop on Memory Management, St. Malo, France, Yves Bekkers and Jacques Cohen, eds.).
Springer-Verlag, LNCS 637, 1992.

A CONCURRENT IMPLEMENTATION OF
SIMULATED ANNEALING AND ITS
APPLICATION TO THE VRPTW
OPTIMIZATION PROBLEM

Agnieszka Debudaj-Grabysz1 and Zbigniew J. Czech2

1Silesia University of Technology, Gliwice, Poland; 2Silesia University of Technology,
Gliwice, and University of Silesia, Sosnowiec, Poland

Abstract: It is known, that concurrent computing can be applied to heuristic methods
(e.g. simulated annealing) for combinatorial optimization to shorten time of
computation. This paper presents a communication scheme for message
passing environment, tested on the known optimization problem – VRPTW.
Application of the scheme allows speed-up without worsening quality of
solutions – for one of Solomon’s benchmarking tests the new best solution was
found.

Key words: simulated annealing, message passing, VRPTW, parallel processing,
communication.

1. INTRODUCTION

Desire to reduce time to get a solution is the reason to develop concurrent
versions of existing sequential algorithms. This paper describes an attempt to
parallelize the simulated annealing (SA) – a heuristic method of
optimization. Heuristic methods are applied when the universe of possible
solutions of the problem is so large, that it cannot be scanned in finite – or at
least acceptable – time. Vehicle routing problem with time windows
(VRPTW) is an example of such problems. To get a practical feeling of the
subject, one can imagine a factory dealing with distribution of its own
products according to incoming orders. Optimization of routing makes the
distribution cost efficient, whereas parallelization accelerates the preparation

202 DISTRIBUTED AND PARALLEL SYSTEMS

of routes description. Thus, practically, vehicles can depart earlier or,
alternatively, last orders could be accepted later.

The SA bibliography focuses on sequential version of the algorithm (e.g.
Aarts and Korst, 1989; Salamon, Sibani and Frost, 2002), however, parallel
versions are investigated too. Aarts and Korst (1989) as well as Azencott
(1992) give directional recommendations as for parallelization of SA. This
research refers to a known approach of parallelization of the simulated
annealing, named multiple trial method (Aarts and Korst, 1989; Roussel-
Ragot and Dreyfus, 1992), but introduces modifications to the known
approach, with synchronization limited to solution acceptance events as the
most prominent one. Simplicity of the statement could be misleading: the
implementation has to overcome many practical problems with
communication in order to efficiently speed up computation. For example:
• Polling is applied to detect moments when data are sent, because message

passing – more precisely: Message Passing Interface (Gropp et al., 1996,
Gropp and Lusk, 1996) – was selected as the communication model in
the work.

• Original tuning of the algorithm was conducted. Without that tuning no
speed-up was observed, especially in case of more then two processors.
As for the problem domain, VRPTW – formally formulated by Solomon,

(1987), who proposed also a suite of tests for benchmarking, has a rich
bibliography too, with papers of Larsen (1999) and Tan, Lee and Zhu (1999)
as ones of the newest examples. There is, however, only one paper known to
the authors, namely by Czech and Czarnas (2002), devoted to a parallel
version of SA applied to VRPTW. In contrast to the motivation of our
research, i.e. speed-up, Czech and Czarnas (2002) take advantage of the
parallel algorithm to achieve higher accuracy of solutions of some Solomon
instances of VRPTW.

The plan of the paper is as follows: section 2 briefs theoretical basis of
the sequential and parallel SA algorithm. Section 3 describes applied
message passing with synchronization at solution finding events and
algorithm tuning. Section 4 collects results of experiments. The paper is
concluded by brief description of possible further modifications.

2. SIMULATED ANNEALING

In the simulated annealing one searches the optimal state, i.e. the state
attributed by either minimal or maximal value of the cost function. It is
achieved by comparing the current solution with a random solution from a
specific neighborhood. With some probability, worse solutions could be
accepted as well, which prevents convergence to local optima. The

A Concurrent Implementation of Simulated Annealing … 203

probability decreases over the process of annealing, in sync with the
parameter called – by analogy to the real process – temperature. Ideally, the
annealing should last infinitely long and temperature should decrease
infinitesimally slowly. An outline of the SA algorithm is presented in
Figure 1.

Figure 1. SA algorithm

A single execution of the inner loop step is called a trial.
In multiple trial parallelism (Aarts and Korst, 1989) trials ran

concurrently on separate processors. A more detailed description of this
strategy is given by Azencott (1992). By assumption, there are p processors
available and working in parallel. At time i the process of annealing is
characterized by a configuration belonging to the universe of solutions. At
i+1, every processor generates a solution. The new one, common for all
configurations, is randomly selected from accepted solutions. If no solution
is accepted, then the configuration from time i is not changed.

3. COMMUNICATION SCHEME OF
CONCURRENT SIMULATED ANNEALING

The master-slave communication scheme proposed by Roussel-Ragot
and Dreyfus (1992) is the starting point of this research. It refers to shared
memory model, so it can be assumed that time to exchange information
among processors is neglectable – the assumption is not necessarily true in
case of message passing environment. Because timing of events requiring
information to be sent is not known in advance, polling is used to define
timing of information arrival: in every step of the algorithm, processors
check whether there is a message to be received. This is the main

204 DISTRIBUTED AND PARALLEL SYSTEMS

modification of the Roussel-Ragot and Dreyfus scheme applied, resulting
from the assumption that time to check, if there is a message to receive is
substantially shorter than time to send and receive a message. Among other
modifications, let us mention that there is no master processor: an accepted
solution is broadcast to all processors.

Two strategies to organize asynchronous communication in distributed
systems are defined in literature (Fujimoto, 2000). The first strategy, so
called optimistic, assumes that processors work totally asynchronously,
however it must be possible for them to step back to whatever point. This is
due to the fact that independent processors can get information on a solution
that has been found with some delay.

In this research the focus is put on the second, conservative strategy. It
assumes that when an event occurs which requires information to be sent, the
sending processor does not undertake any further actions without
acknowledgement from remaining processors that they have received the
information. In our paper the proposed model of communication,
conforming to the conservative strategy, is named as model with
synchronization at solution acceptance events. The model is not purely
asynchronous, but during a sequence of steps when no solution is found it
allows asynchronous work.

3.1 Implementation of communication with
synchronization at solution acceptance events

The scheme of communication assumes that when a processor finds a
new solution, all processors must be synchronized to align their
configurations:
1.
2.

3.
4.
5.

Processors work asynchronously.
The processor which finds a solution broadcasts a synchronization
request.
The processor requesting synchronization stops after the broadcast.
The processor which gets the request takes part in synchronization.
During synchronization processors exchange their data, i.e. each
processor receives information on what all other processors have
accepted and how many trials each of them have done. After this,
processors select solution individually, according to the same criteria:

if only one solution is accepted it is automatically selected
if more than one solution is accepted, then the one generated at the
processor with the lowest rank (order number) is selected; it is
analogous to a random selection

A Concurrent Implementation of Simulated Annealing … 205

an effective number of investigated moves between two
synchronization points is calculated according to the following
formula:

where sum_of_trials is the total number of trials, is the number of
rejected moves, p is the number of processors.

Following synchronization and agreement on a new solution, processors
continue work asynchronously.

6.

3.2 Tuning of the algorithm

To analyze the process of passing the messages, the program Jumpshot-3
was used (Chan, Gropp and Lusk, 2000). It is a visualization tool to trace
data written in scalable log format (SLOG), generated by parallel program
during its execution. Jumpshot displays Gantt charts visualizing MPI
functions together with arrows that indicate messages. In Figure 2:

Processor 0 (top one in the picture) accepts the solution and sends
synchronization request (SEND instruction) to the processor 1 (bottom
one).
Processor 1 checks, if there is a message that can be received (IPROBE
instruction).
Processors agree on solutions (two ALLREDUCE instruction).
Processor 0 broadcasts the data (BCAST instruction).
Additionally, two IPROBE instructions delimit the computation phase.
Looking at the picture, it is clear that duration of the communication is

too long compared to the duration of the computation phase. So the
following improvements were implemented:

The long message was split into two.
Data structure was reorganized: table of structures gave way to a
structure of tables.
Two ALLREDUCE instructions were merged.
The resulting efficiency gain is clearly visible in Figure 3.

206 DISTRIBUTED AND PARALLEL SYSTEMS

Figure 2. Communication before improvement

Figure 3. Communication after improvement

A Concurrent Implementation of Simulated Annealing … 207

4. EXPERIMENTAL RESULTS

4.1 VRPTW

It is assumed that there is a warehouse, centrally located to customers
(cities). There is a road between each pair of customers
and between each customer and the warehouse (i = 0) . The objective is to
supply goods to all customers at minimum cost vehicle routes (i.e. total
travel distance should be minimized). Each customer has its own demand
and associated time window where and determine the earliest and
the latest time to start servicing. Each customer should be visited only once.
Each route must start and terminate at the warehouse, and should preserve
maximum vehicle capacity Q. The warehouse also has its own time window,
i. e. each route must start and terminate within this window. The solution
with least number of route legs (the first goal of optimization) is better then a
solution with smallest total distance traveled (the second goal of
optimization).

The sequential algorithm by Czarnas (2002) was the basis for
parallelization. The main parameters of annealing for the reduction of the
number of route legs phase (phase 1) and the reduction of the route length
phase (phase 2) have been assumed as follows:

Cooling schedule – temperature decreases according to the formula:
where cooling ratio is 0.85 in the phase 1 and 0.98 in the

phase 2.
Epoch length – the number of trials executed at each temperature – is 10

(n means the number of customers).
Termination conditions: SA stops after 40 temperature reductions in
phase 1 and 200 temperature reductions in phase 2.

5. IMPLEMENTATION

Experiments were carried out on UltraSPARC Sun Enterprise installed at
the Silesia University of Technology Computer Center.

A test means a series of concurrent computations, carried out on an
increasing number of processors to observe the computation time and
qualitative parameters. The numerical data were obtained by running the
program a number of times (up to 100) for the same set of parameters. Tests
belong to two of Solomon’s benchmarking problem sets (RC1 – narrow time
windows and RC2 – wide time window) with 100 customers. The measured
time is the real time of the execution, reported by time command of UNIX

208 DISTRIBUTED AND PARALLEL SYSTEMS

system. Processes had the highest priority to simulate the situation of
exclusive access to a multi-user machine.

The relationship between speed-up and number of processors is
graphically shown in Figure 4. Formally, speed-up denotes a quotient of the
computation time on one processor and computation time on p processors.
Data illustrating lowest and highest speed-up for both sets are shown.

As for quality of results it should be noted that the algorithm gives very
good solutions, usually best known. Specifically, for the set RC202 the new
best solution was found with total distance of 1365.64.

Figure 4. Relationship between speed-up and number of engaged processors for sets RC1
and RC2

6. CONCLUSIONS

The development of a communication model and its implementation for a
concurrent version of multiple trial simulated annealing in message
passing environment was proposed.
Testing on VRPTW shows speed-up increases with number of processors
for majority of benchmark tests (the saturation as in case of RC204 was

A Concurrent Implementation of Simulated Annealing … 209

observed only for two tests). At the same time there in no clear
relationship between the average cost and the number of processors,
however, often the cost is better than in case of single processor (more
detailed data available on request).
Further possible improvements are:

Broadcasting only sequence of moves instead of sending the whole
solution
Application of optimistic strategy to asynchronous communication
Clustering as described by Aarts (1986).

REFERENCES

Aarts, E.H.L, and Korst, J., 1989, Simulated Annealing and Boltzman Machines, John
Wiley & Sons.

Aarts, E.H.L., 1986, Parallel implementation of the statistical cooling algorithm.
INTEGRATION, the VLSI journal.

Azencott, R., ed., 1992, Simulated Annealing. Parallelization Techniques, John
Wiley & Sons.

Chan, A., Gropp, W., and Lusk, E., 2000, A tour of Jumpshot-3, ftp://
ftp.mcs.anl.gov/pub/mpi/nt /binaries.

Czarnas, P, 2001, Traveling Salesman Problem With Time Windows. Solution by Simulated
Annealing, MSc thesis (in Polish), Uniwersytet

Czech, Z.J., and Czarnas, P., 2002, Parallel simulated annealing for the vehicle routing
problem with time windows, 10th Euromicro Workshop on Parallel, Distributed and
Network-based Processing, Canary Islands - Spain, (January 9-11, 2002).

Fujimoto, R.M., 2000, Parallel and Distributed Simulation Systems, A Wiley-Interscience
Publication.

Gropp, W., Lusk, E., Doss, N., and Skjellum A., 1996, A high-performance, portable
implementation of the MPI message passing interface standard, Parallel Computing
22(6):789-828.

Gropp, W., and Lusk, E., 1996, User’s Guide for mpich, a Portable Implementation of MPI,
ANL-96/6, Mathematics and Computer Science Division, Argonne National Laboratory.

Larsen, J., 1999, Vehicle routing with time windows – finding optimal solutions efficiently,
http://citeseer.nj.nec.com/larsen99vehicle.html, (September 15, 1999).

Roussel-Ragot, P., and Dreyfus, G., 1992, Parallel annealing by multiple trials: an
experimental study on a transputer network, in Azencott (1992), pp. 91–108.

Solomon, M., 1987, Algorithms for the vehicle routing and scheduling problem with time
windows constraints, Oper. Res. 35:254–265.

Salamon, P., Sibani, P., and Frost, R., 2002, Facts, Conjectures and Improvements for
Simulated Annealing, SIAM.

Tan, K.C., Lee, L.H., and Zhu, K.Q., 1999, Heuristic methods for vehicle routing problem
with time widows, 1999.

This page intentionally left blank

Author Index

Aichinger‚ Bernhard‚ 73
Alves‚ Albano‚ 63
Böszörményi‚ Lászlo‚ 155
Belloum‚ Ádam‚ 21
Bencsura‚ Ákos‚ 121
Borkowski‚ J.‚ 113
Brunst‚ Holger‚ 93
Czech‚ Zbigniew J.‚ 201
Debudaj-Grabysz‚ Agnieszka‚ 201
Delaitre‚ Thierry‚ 129
Exposto‚ José‚ 63
Gansterer‚ Wilfried N.‚ 39
Gourgoulis‚ A.‚ 129
Goyeneche‚ A.‚ 129
Heinzlreiter‚ Paul‚ 29
Hertzberger‚ L.O.‚ 21
John‚ Sunil‚ 147
Juhasz‚ Zoltan‚ 13
Kacsuk‚ Peter‚ 13
Kacsukné Bruckner‚ Livia‚ 155
Kiss, Tamás‚ 129‚ 155
Kobler‚ Rene‚ 73
Kopanski‚ D.‚ 113
Korkhov‚ Vladimir‚ 21
Kovács‚ József‚ 103
Kranzlmüller‚ Dieter‚ 73‚ 93
Lagzi‚ István‚ 137

Lendvay‚ György‚ 121
Loulergue‚ Frédéric‚ 185
Lovas‚ Róbert‚ 83‚ 137
Macías‚ Elsa M.‚ 55
Maselino‚ P.‚ 129
Mieloszyk‚ Krzysztof‚ 173
Morrison‚ John P.‚ 147
Nagel‚ Wolfgang E.‚ 93
Pina‚ António‚ 63
Podhorszki‚ Norbert‚ 193
Pota‚ Szabolcs‚ 13
Power‚ David A.‚ 147
Rosmanith‚ Herbert‚ 3
Rufino‚ José‚ 63
Schaubschläger‚ Christian‚ 73
Sipos‚ Gergely‚ 13
Sunderam‚ Vaidy‚ 55
Suárez‚ Alvaro‚ 55
Szkaliczki‚ Tibor‚ 155
Terstyanszky‚ Gábor‚ 129
Tsujita‚ Yuichi‚ 47
Tudruj‚ Marek‚ 113
Turányi‚ Tamás‚ 137
Vécsei‚ Bertalan‚ 83
Volkert‚ Jens‚ 29‚ 73‚ 3
Weingarten‚ N.‚ 129
Winter‚ S. C.‚ 129
Wiszniewski‚ Bogdan‚ 173

	Distributed and Parallel Systems: Cluster and Grid Computing
	Cover

	Table of Contents
	Preface
	Part I Grid Systems
	glogin - Interactive Connectivity for the Grid
	Parallel Program Execution Support in the JGrid System
	VL-E: Approaches to Design a Grid-Based Virtual Laboratory
	Scheduling and Resource Brokering within the Grid Visualization Kernel

	Part II Cluster Technology
	Message Passing vs. Virtual Shared Memory, a Performance Comparison
	MPI-I/O with a Shared File Pointer Using a Parallel Virtual File System
	An Approach Toward MPI Applications in Wireless Networks
	Deploying Applications in Multi-SAN SMP Clusters

	Part III Programming Tools
	Monitoring and Program Analysis Activities with DeWiz
	Integration of Formal Verification and Debugging Methods in P-GRADE Environment
	Tools for Scalable Parallel Program Analysis - Vampir NG and DeWiz
	Process Migration In Clusters and Cluster Grids

	Part IV P-GRADE
	Graphical Design of Parallel Programs With Control Based on Global Application States Using an Extended P-GRADE Systems
	Parallelization of a Quantum Scattering Code using P-GRADE
	Traffic Simulation in P-Grade as a Grid Service
	Development of a Grid Enabled Chemistry Application

	Part V Applications
	Supporting Native Applications in WebCom-G
	Grid Solution for E-Marketplaces Integrated with Logistics
	Incremental Placement of Nodes in a Large-Scale Adaptive Distributed Multimedia Server
	Component Based Flight Simulation in DIS Systems

	Part VI Algorithms
	Management of Communication Environments for Minimally Synchronous Parallel ML
	Analysis of the Multi-Phase Copying Garbage Collection Algorithm
	A Concurrent Implementation of Simulated Annealing and Its Application to the VRPTW Optimization Problem

	Author Index
	Team DDU

