
© NVIDIA Corporation 2008

CUDA
Programming Model

© NVIDIA Corporation 2008

Some Design Goals

Enable heterogeneous systems (i.e., CPU+GPU)
CPU & GPU are separate devices with separate DRAMs

Scale to 100’s of cores, 1000’s of parallel threads

Let programmers focus on parallel algorithms
not mechanics of a parallel programming language
Use C/C++ with minimal extensions

© NVIDIA Corporation 2008

Parallel Kernel
KernelA (args);

Parallel Kernel
KernelB (args);

Serial Code

. . .

. . .

Serial Code

Device

Device

Host

Host

Heterogeneous Programming

CUDA = serial program with parallel kernels, all in C
Serial C code executes in a host thread (i.e. CPU thread)
Parallel kernel C code executes in many device threads
across multiple processing elements (i.e. GPU threads)

© NVIDIA Corporation 2008

Kernel = Many Concurrent Threads

One kernel is executed at a time on the device
Many threads execute each kernel

Each thread executes the same code…
… on different data based on its threadID

0 1 2 3 4 5 6 7

…
float x = input[threadID];
float y = func(x);
output[threadID] = y;
…

threadID

CUDA threads might be
Physical threads

As on NVIDIA GPUs
GPU thread creation and
context switching are
essentially free

Or virtual threads
E.g. 1 CPU core might execute
multiple CUDA threads

© NVIDIA Corporation 2008

Hierarchy of Concurrent Threads

Threads are grouped into thread blocks
Kernel = grid of thread blocks

…
float x =
input[threadID];
float y = func(x);
output[threadID] = y;
…

threadID

Thread Block 0

…
…
float x =
input[threadID];
float y = func(x);
output[threadID] = y;
…

Thread Block 1

…
float x =
input[threadID];
float y = func(x);
output[threadID] = y;
…

Thread Block N - 1
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

By definition, threads in the same block may synchronize with
barriers
scratch[threadID] = begin[threadID];

__syncthreads();

int left = scratch[threadID - 1];

Threads
wait at the barrier
until all threads

in the same block
reach the barrier

© NVIDIA Corporation 2008

Transparent Scalability
Thread blocks cannot synchronize

So they can run in any order, concurrently or sequentially
This independence gives scalability:

A kernel scales across any number of parallel cores

2-Core Device

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Kernel grid

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

4-Core Device

Block 0 Block 1 Block 2 Block 3

Block 4 Block 5 Block 6 Block 7

Implicit barrier between dependent kernels
vec_minus<<<nblocks, blksize>>>(a, b, c);

vec_dot<<<nblocks, blksize>>>(c, c);

© NVIDIA Corporation 2008

Memory Hierarchy

Thread
Per-thread

Local Memory

Block
Per-block

Shared
Memory

Kernel 0

. . .
Per-device

Global
Memory

. . .

Kernel 1

Sequential
Kernels

© NVIDIA Corporation 2008

Heterogeneous Memory Model

Device 0
memory

Device 1
memory

Host memory cudaMemcpy()

© NVIDIA Corporation 2008

CUDA Language:
C with Minimal Extensions
Philosophy: provide minimal set of extensions necessary to expose power

Declaration specifiers to indicate where things live
__global__ void KernelFunc(...); // kernel function, runs on device
__device__ int GlobalVar; // variable in device memory
__shared__ int SharedVar; // variable in per-block shared memory

Extend function invocation syntax for parallel kernel launch
KernelFunc<<<500, 128>>>(...); // launch 500 blocks w/ 128 threads each

Special variables for thread identification in kernels
dim3 threadIdx; dim3 blockIdx; dim3 blockDim; dim3 gridDim;

Intrinsics that expose specific operations in kernel code
__syncthreads(); // barrier synchronization within kernel

© NVIDIA Corporation 2008

CUDA Runtime

Device management:
cudaGetDeviceCount(), cudaGetDeviceProperties()

Device memory management:
cudaMalloc(), cudaFree(), cudaMemcpy()

Graphics interoperability:
cudaGLMapBufferObject(), cudaD3D9MapResources()

Texture management:
cudaBindTexture(), cudaBindTextureToArray()

© NVIDIA Corporation 2008 25

Example: Increment Array Elements

CPU program CUDA program

void increment_cpu(float *a, float b, int N)
{

for (int idx = 0; idx<N; idx++)
a[idx] = a[idx] + b;

}

void main()
{

.....
increment_cpu(a, b, N);

}

__global__ void increment_gpu(float *a, float b, int N)
{

int idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx < N)

a[idx] = a[idx] + b;
}

void main()
{

…..
dim3 dimBlock (blocksize);
dim3 dimGrid(ceil(N / (float)blocksize));
increment_gpu<<<dimGrid, dimBlock>>>(a, b, N);

}

© NVIDIA Corporation 2008 26

Example: Increment Array Elements

Increment N-element vector a by scalar b

Let’s assume N=16, blockDim=4 -> 4 blocks

blockIdx.x=0
blockDim.x=4
threadIdx.x=0,1,2,3
idx=0,1,2,3

blockIdx.x=1
blockDim.x=4
threadIdx.x=0,1,2,3
idx=4,5,6,7

blockIdx.x=2
blockDim.x=4
threadIdx.x=0,1,2,3
idx=8,9,10,11

blockIdx.x=3
blockDim.x=4
threadIdx.x=0,1,2,3
idx=12,13,14,15

int idx = blockDim.x * blockId.x + threadIdx.x;
will map from local index threadIdx to global index

NB: blockDim should be >= 32 in real code, this is just an example

Common Pattern!

© NVIDIA Corporation 2008 27

Example: Host Code
// allocate host memory
unsigned int numBytes = N * sizeof(float)
float* h_A = (float*) malloc(numBytes);

// allocate device memory
float* d_A = 0;
cudaMalloc((void**)&d_A, numbytes);

// copy data from host to device
cudaMemcpy(d_A, h_A, numBytes, cudaMemcpyHostToDevice);

// execute the kernel
increment_gpu<<< N/blockSize, blockSize>>>(d_A, b);

// copy data from device back to host
cudaMemcpy(h_A, d_A, numBytes, cudaMemcpyDeviceToHost);

// free device memory
cudaFree(d_A);

© NVIDIA Corporation 2008 28

More on Thread and Block IDs

Threads and blocks have
IDs

So each thread can decide
what data to work on

Block ID: 1D or 2D
Thread ID: 1D, 2D, or 3D

Simplifies memory
addressing when
processing
multidimensional data

Image processing
Solving PDEs on volumes

Host

Kernel
1

Kernel
2

Device

Grid 1

Block
(0, 0)

Block
(1, 0)

Block
(2, 0)

Block
(0, 1)

Block
(1, 1)

Block
(2, 1)

Grid 2

Block (1, 1)

Thread
(0, 1)

Thread
(1, 1)

Thread
(2, 1)

Thread
(3, 1)

Thread
(4, 1)

Thread
(0, 2)

Thread
(1, 2)

Thread
(2, 2)

Thread
(3, 2)

Thread
(4, 2)

Thread
(0, 0)

Thread
(1, 0)

Thread
(2, 0)

Thread
(3, 0)

Thread
(4, 0)

© NVIDIA Corporation 2008

More on Memory Spaces

Each thread can:
Read/write per-thread registers
Read/write per-block shared memory
Read/write per-grid global memory
Most important, commonly used

Each thread can also:
Read/write per-thread local memory
Read only per-grid constant memory
Read only per-grid texture memory
Used for convenience/performance

More details later

Grid

Constant
Memory

Texture
Memory

Global
Memory

Block (0, 0)

Shared Memory

Local
Memory

Thread (0, 0)

Registers

Local
Memory

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Local
Memory

Thread (0, 0)

Registers

Local
Memory

Thread (1, 0)

Registers

Host

The host can read/write global,
constant, and texture memory
(stored in DRAM)

© NVIDIA Corporation 2008

Features Available in Device Code

Standard mathematical functions
sinf, powf, atanf, ceil, min, sqrtf, etc.

Texture accesses in kernels
texture<float,2> my_texture; // declare texture reference
float4 texel = texfetch(my_texture, u, v);

Integer atomic operations in global memory
atomicAdd, atomicMin, atomicAnd, atomicCAS, etc.
e.g., increment shared queue pointer with atomicInc()
Only for devices with compute capability 1.1

1.0 = Tesla, Quadro FX5600, GeForce 8800 GTX, etc.
1.1 = GeForce 8800 GT, etc.

© NVIDIA Corporation 2008

Compiling CUDA for NVIDIA GPUs

Any source file containing
CUDA language
extensions must be
compiled with NVCC

NVCC separates code
running on the host from
code running on the device

Two-stage compilation:
1. Virtual ISA

Parallel Thread eXecution
2. Device-specific binary

object

NVCC

C/C++ CUDA
Application

PTX to Target
Compiler

G80 … GPU

PTX Code

CPU Code

Generic

Specialized

© NVIDIA Corporation 2008

Debugging Using the
Device Emulation Mode

An executable compiled in device emulation mode
(nvcc -deviceemu) runs completely on the host
using the CUDA runtime

No need of any device and CUDA driver
Each device thread is emulated with a host thread

When running in device emulation mode, one can:
Use host native debug support (breakpoints, inspection,
etc.)
Access any device-specific data from host code and vice-
versa
Call any host function from device code (e.g. printf) and
vice-versa
Detect deadlock situations caused by improper usage of
__syncthreads

© NVIDIA Corporation 2008

Device Emulation Mode Pitfalls

Emulated device threads execute sequentially, so
simultaneous accesses of the same memory
location by multiple threads potentially produce
different results
Dereferencing device pointers on the host or host
pointers on the device can produce correct results
in device emulation mode, but will generate an error
in device execution mode
Results of floating-point computations will slightly
differ because of:

Different compiler outputs
Different instruction sets
Use of extended precision for intermediate results

There are various options to force strict single precision on
the host

© NVIDIA Corporation 2008

Reduction Example

Reduce N values to a single one:
Sum(v0, v1, … , vN-2, vN-1)
Min(v0, v1, … , vN-2, vN-1)
Max(v0, v1, … , vN-2, vN-1)

Common primitive in parallel programming
Easy to implement in CUDA

Less so to get it right
Divided into 5 exercises throughout the day

Each exercise illustrates one particular optimization
strategy

© NVIDIA Corporation 2008

Reduction Exercise

At the end of each exercise, the result of the
reduction computed on the device is checked for
correctness

“Test PASSED” or “Test FAILED” is printed out to the
console

The goal is to replace the “TODO“ words in the code
by the right piece of code to get “test PASSED”

© NVIDIA Corporation 2008

Reduction Exercise 1

Open up reduce\src\reduce1.sln
Code walkthrough:

main.cpp
Allocate host and device memory
Call reduce() defined in reduce1.cu
Profile and verify result

reduce1.cu

CUDA code compiled with nvcc

Contains TODOs

Device emulation compilation configurations: Emu*

© NVIDIA Corporation 2008

Reduce 1: Blocking the Data

Split the work among the N multiprocessors (16 on
G80) by launching numBlocks=N thread blocks

Block IDs

b = numBlocks

…

……

0

…

b-1

Array of
the numValues values

to be reduced

© NVIDIA Corporation 2008

Reduce 1: Blocking the Data

Within a block, split the work among the threads
A block can have at most 512 threads
We choose numThreadsPerBlock=512 threads

Thread IDs

Block IDs

t = numThreadsPerBlock

b = numBlocks

…

…

0 … t-1

… … …

0

0 … t-1

… … …

b-1

© NVIDIA Corporation 2008

Reduce 1: Multi-Pass Reduction

Blocks cannot synchronize so reduce_kernel is
called multiple times:

First call reduces from numValues to numThreads

Each subsequent call reduces by half

Ping pong between input and output buffers
(d_Result[2])

© NVIDIA Corporation 2008

Reduce 1: Go Ahead!

Goal: Replace the TODOs in reduce1.cu to get
“test PASSED”

Thread IDs

Block IDs

t = numThreadsPerBlock

b = numBlocks

…

…

0 … t-1

… … …

0

0 … t-1

… … …

b-1

© NVIDIA Corporation 2008

CUDA Implementation
on the GPU

