<3

NVIDIA

CUDA
Programming Model

© NVIDIA Corporation 2008

Some Design Goals <3

NVIDIA

® Enable heterogeneous systems (i.e., CPU+GPU)
® CPU & GPU are separate devices with separate DRAMs

® Scale to 100’s of cores, 1000’s of parallel threads

® Let programmers focus on parallel algorithms
® not mechanics of a parallel programming language
® Use C/C++ with minimal extensions

© NVIDIA Corporation 2008

Heterogeneous Programming rfr%n

® CUDA = serial program with parallel kernels, all in C
® Serial C code executes in a host thread (i.e. CPU thread)

® Parallel kernel C code executes in many device threads
across multiple processing elements (i.e. GPU threads)

Serial Code Host i

KernelA (args); e
Serial Code Host %

KernelB (args); ek

Kernel = Many Concurrent Threads S%A

® One kernel is executed at a time on the device

® Many threads execute each kernel
® Each thread executes the same code...
® ... on different data based on its threadID

threadID |0(1(2|3|4|5|6|7

® CUDA threads might be

® Physical threads input [
® As on NVIDIA GPUs func (x) ;

® GPU thread creation and 1 = vy;
context switching are
essentially free

® Or virtual threads

® E.g. 1 CPU core might execute
multiple CUDA threads

© NVIDIA Corporation 2008

Hierarchy of Concurrent Threads <X

nvinDia
® Threads are grouped into thread blocks
® Kernel = grid of thread blocks
Thread Block 0 Thread Block 1 Thread Block N - 1
threadID ol 1] 2[3]4|ls]e]7 |0|1|2|3|4|5|6|7| ol 1| 23] als]6]7

float x = float x =

float x =
input [threadID] ; input [threadID]; input [threadID];
float y = func(x); float y = func(x); EEE float y = func(x);

output [threadID] = y; output [threadID] = y; output [threadID] = y;

® By definition, threads in the same block may synchronize with

barriers (Threads

scratch[threadID] = begin[threadID]; wait at the barrier
until all threads

in the same block
reach the barrier

_ Y,

°
I

int left = scratch|[threadID - 1];

Transparent Scalability <3

NVIDIA

® Thread blocks cannot synchronize
® So they can run in any order, concurrently or sequentially

® This independence gives scalability:
® A kernel scales across any number of parallel cores

Kernel grid

2-Core Device 4-Core Device
Block 0 Block 1
/ Block 2 Block 3 \

Block 4 Block 5

Block 0 Block 1 Block 0 Block 1 Block2 Block 3

Block 6 Block 7

Block4 Block5 Block6 Block7

Block2 Block 3

Block4 Block 5

Block 6| | Block 7 ® Implicit barrier between dependent kernels
vec minus<<<nblocks, blksize>>>(a, b, c);

g s s

O ooration 2008 vec dot<<<nblocks, blksize>>>(c, c);

Memory Hierarchy <3

nvibDilA
Thread
Per-thread
Local Memory
Block
Per-block
Shared
Memory
Kernel 0
Sequential VL || 2 | | e S
Kernels L3 SR || S | S
Per-device
Kernel 1 Global
ooy | v T e Memory

\

© NVIDIA Corporation 2008

Heterogeneous Memory Model

Host memory

© NVIDIA Corporation 2008

cudaMemcpy ()

Device 0
memory

Device 1
memory

>

NVIDIA

®

®

®

®

®

CUDA Language: S;%A
C with Minimal Extensions

Philosophy: provide minimal set of extensions necessary to expose power

Declaration specifiers to indicate where things live
__global void KernmelFunc(...); // kernelfunction, runs on device
~_device int GlobalVar; // Vvariable in device memory
~_shared int SharedvVar; // variable in per-block shared memory

Extend function invocation syntax for parallel kernel launch
KernelFunc<<<500, 128>>>(...); // launch 500 blocks w/ 128 threads each

Special variables for thread identification in kernels
dim3 threadIdx; dim3 blockIdx; dim3 blockDim; dim3 gridDim;

Intrinsics that expose specific operations in kernel code
___syncthreads () ; // barrier synchronization within kernel

© NVIDIA Corporation 2008

CUDA Runtime <3

NVIDIA

® Device management:
cudaGetDeviceCount (), cudaGetDeviceProperties|()

® Device memory management:
cudaMalloc (), cudaFree (), cudaMemcpy ()

® Graphics interoperability:

cudaGLMapBufferObject (), cudaD3D9MapResources ()

® Texture management:
cudaBindTexture (), cudaBindTextureToArray ()

© NVIDIA Corporation 2008

Example: Increment Array Elements E%A

CPU program CUDA program

void increment_cpu(float *a, float b, int N) __global__ void increment_gpu(float *a, float b, int N)

{ {
for (int idx = 0; idx<N; idx++) int idx = blockldx.x * blockDim.x + threadldx.x;
alidx] = a[idx] + b; if (idx < N)
} afidx] = a[idx] + b;
}
void main() void main()
{ {
increment_cpu(a, b, N); dim3 dimBlock (blocksize);
} dim3 dimGrid(ceil(N / (float)blocksize));
increment_gpu<<<dimGrid, dimBlock>>>(a, b, N);
}

© NVIDIA Corporation 2008 25

Example: Increment Array Elements E%A

Increment N-element vector a by scalar b

Let’'s assume N=16, blockDim=4 -> 4 blocks

blockldx.x=0 blockldx.x=1 blockldx.x=2 blockldx.x=3
blockDim.x=4 blockDim.x=4 blockDim.x=4 blockDim.x=4
threadldx.x=0,1,2,3 threadldx.x=0,1,2,3 threadldx.x=0,1,2,3 threadldx.x=0,1,2,3
1dx=0,1,2,3 iIdx=4,5,6,7 1dx=8,9,10,11 Idx=12,13,14,15

in_t ldx = bIockDim.>§ * blockld.x + threadldx.x;_ }

will map from local index threadldx to global index

NB: blockDim should be >= 32 in real code, this is just an example

© NVIDIA Corporation 2008 26

Example: Host Code <X
nviDIA
// allocate host memory

unsigned int numBytes = N * sizeof (float)
float* h A = (float*) malloc (numBytes) ;

// allocate device memory
float* d A = 0;
cudaMalloc ((void**)&d A, numbytes);

// copy data from host to device
cudaMemcpy (d A, h A, numBytes, cudaMemcpyHostToDevice) ;

// execute the kernel
increment gpu<<< N/blockSize, blockSize>>>(d A, b);

// copy data from device back to host
cudaMemcpy (h A, d A, numBytes, cudaMemcpyDeviceToHost) ;

// free device memory
cudaFree(d A);

© NVIDIA Corporation 2008 27

More on Thread and Block IDs <X

NVIDIA
® Threads and blocks have TeRflzE
IDs Grid 1
® So each thread can decide Ke:ne' Block Block
what data to work on (0,0) (1,0)
Blocljg/', Block
0,1 (1,1)
® Block ID: 1D or 2D ‘
® Thread ID: 1D, 2D, or 3D R G2
Kernel !
® Simplifies memory I
addressing when Hlfi)
proceSSing Thread | Thread | Thread | Thread | Thread
multidimensional data ©0 109 |9 |Eo |«
- Thread | Thread | Thread | Thread | Thread
® Image processing wy | @y | @1

Q SOIVing PDES on V0|umes Thread | Thread | Thread | Thread | Thread
© NVIDIA Corporation 2008 02 | 12 | 22 | B2 | 42

More on Memory Spaces <3

NVIDIA

® Each thread can: Grid

® Read/write per-thread registers

® Read/write per-block shared memory
® Read/write per-grid global memory
® Most important, commonly used

Block (0, 0) Block (1, 0)

Shared Memory Shared Memory

Registers Registers Registers Registers

® Each thread can also:
® Read/write per-thread local memory Thread (0, 0) Thread (1,0) | Thread (0, 0) | Thread (1, 0)
® Read only per-grid constant memory
® Read only per-grid texture memory e e

® Used for convenience/performance Memory ~ Memory
® More details later

Global

® The host can read/write global, Memory

constant, and texture memory Constant
(stored in DRAM)

Memory

Texture
Memory

© NVIDIA Corporation 2008

Features Available in Device Code S;%n

® Standard mathematical functions

sinf, powf, atanf, ceil, min, sqrtf, etc.

® Texture accesses in kernels
texture<float, 2> my texture; // declare texture reference
float4 texel = texfetch(my texture, u, v);

® Integer atomic operations in global memory
atomicAdd, atomicMin, atomicAnd, atomicCAS, etc.
® e.g., increment shared queue pointer with atomicInc ()

® Only for devices with compute capability 1.1

® 1.0 = Tesla, Quadro FX5600, GeForce 8800 GTX, etc.
® 1.1 = GeForce 8800 GT, etc.

© NVIDIA Corporation 2008

Compiling CUDA for NVIDIA GPUs

® Any source file containing
CUDA language
extensions must be
compiled with NVCC

® NVCC separates code
running on the host from
code running on the device

® Two-stage compilation:

1. Virtual ISA
® Parallel Thread eXecution

2. Device-specific binary
object

© NVIDIA Corporation 2008

<3

NVIDIA

C/C++ CUDA
Application

Generic

PTX to Target
Compiler

Specialized

Debugging Using the ﬁ%n
Device Emulation Mode .

® An executable compiled in device emulation mode
(nvee -deviceemu) runs completely on the host
using the CUDA runtime
® No need of any device and CUDA driver
® Each device thread is emulated with a host thread

® When running in device emulation mode, one can:
® Use host native debug support (breakpoints, inspection,
etc.)

® Access any device-specific data from host code and vice-
versa

® Call any host function from device code (e.g. print£) and
vice-versa

® Detect deadlock situations caused by improper usage of
syncthreads

© NVIDIA Corporation 2008

Device Emulation Mode Pitfalls <X

NVIDIA

® Emulated device threads execute sequentially, so
simultaneous accesses of the same memory
location by multiple threads potentially produce
different results

® Dereferencing device pointers on the host or host
pointers on the device can produce correct results
in device emulation mode, but will generate an error
in device execution mode

® Results of floating-point computations will slightly
differ because of:
® Different compiler outputs
® Different instruction sets

® Use of extended precision for intermediate results

® There are various options to force strict single precision on
the host

© NVIDIA Corporation 2008

Reduction Example <3

NVIDIA

® Reduce N values to a single one:
® Sum(v,, v, .., Vo V)
® Min(vy, V4, ..., Vs VNo1)
® Max(vy, V45 --- 5 VN.2s Vo)
® Common primitive in parallel programming
® Easy to implement in CUDA
® Less so to get it right
® Divided into 5 exercises throughout the day

® Each exercise illustrates one particular optimization
strategy

© NVIDIA Corporation 2008

Reduction Exercise <X
nvibDlA

® At the end of each exercise, the result of the
reduction computed on the device is checked for
correctness

® “Test PASSED” or “Test FAILED” is printed out to the
console

® The goal is to replace the “TODO“ words in the code
by the right piece of code to get “test PASSED”

© NVIDIA Corporation 2008

Reduction Exercise 1

® Open up reduce\src\reducel.sln
® Code walkthrough:

® nain.cpp

® Allocate host and device memory
® Call reduce () defined in reducel.cu
® Profile and verify result

® reducel.cu
® CUDA code compiled with nvcc
® Contains TODOs

=

NVIDIA

® Device emulation compilation configurations: Emu *

© NVIDIA Corporation 2008

Reduce 1: Blocking the Data <3

NVIDIA

® Split the work among the N multiprocessors (16 on
G80) by launching numBlocks=N thread blocks

.

Block IDs 0

b = numBlocks

© NVIDIA Corporation 2008

Reduce 1: Blocking the Data <3

NVIDIA

® Within a block, split the work among the threads
® A block can have at most 512 threads

® We choose numThreadsPerBlock=512 threads

Thread IDs 0 t-1 0 -
\ g J A\ J
Y h'd
Block IDs 0

t = numThreadsPerBlock

b = numBlocks

© NVIDIA Corporation 2008

Reduce 1: Multi-Pass Reduction <X

NVIDIA

® Blocks cannot synchronize so reduce kernel is
called multiple times:

® First call reduces from numValues to numThreads

® Each subsequent call reduces by half

® Ping pong between input and output buffers
(d Result[2])

© NVIDIA Corporation 2008

Reduce 1: Go Ahead! <X

NVIDIA

® Goal: Replace the TODOs in reducel. cu to get
“test PASSED”

Thread IDs 0 t-1 0 t-1
\\§ _J A\ _J
Y Y

Block IDs 0 b-1

t = numThreadsPerBlock

b = numBlocks

© NVIDIA Corporation 2008

<3

NVIDIA

CUDA Implementation
on the GPU

© NVIDIA Corporation 2008

