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The usefulness of Lagrange multipliers for optimization in the presence
of constraints 18 not himted to differentiable functions They can be
applied to problems of maximizing an arbitrary real valued objective func-
tion over any set whatever, subject to bounds on the values of any other
finite collection of real valued functions defined on the same set While
the use of the Lagrange multipliers does not guarantee that a solution will
necessarily be found for all problems, 1t 18 ‘fail-safe’ 1n the sense that any
solution found by their use1s a true solution Since the method 1s s0 sim-
ple compared to other available methods 1t 1s often worth trying first,
and succeeds in a surpnsing fraction of cases They are particularly
well suited to the solution of problems of allocating hmited resources
among a set of independent activities

N MOST textbook treatments, Lagrange multiphers are mtroduced in a
context of differentiable functions, and are used to produce constramed
stationary points Thewr validity or usefulness often appears to be con-
nected with differentiation of the functions to be optimized Many
typical operations-research problems, however, mvolve discontinuous
or nondifferentiable functions (integral valued functions, for example),
which must be optimized subject to constramts
We shall show that with a different viewpomnt the use of Lagrange mul-
tiphers constitutes a technique whose goal 1s marimization (rather than
location of stationary pownts) of a function with constramts, and that mn
this hght there are no restrictions (such as contmnuity or differentiability)
on the functions to be maximized Indeed, the domam of the function to
be maximized can be any set (of any cardimal number) whatever
The basic theorems upon which the technmiques to be presented depend
are quite simple and elementary, and 1t seems likely that some of them may
have been employed previously However, theirr generality and apph-
cability do not seem to be well understood at present (to operations ana-
lysts at least) The presentation will consequently place primary empha-
sis on the mmplications and applications of the basic theorems, as well as
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discussion of a number of techmques for extending the usefulness of the
methods

FORMULATION

For cLARITY of presentation, we shall develop the subject 1n a language
of problems concerning the optimal allocation of resources Other apph-
cations of the theorems will suggest themselves

Let us suppose that there 1s a set 8 (completely arbitrary) that 1s -
terpreted as the set of possible strategies or actions Defined on this
strategy set 1s a real valued function H, called a payoff function H(z)
1s mterpreted as the payoff (or utility) which accrues from employing the
strategy zeS In addition, there are n real valued functions C*(k=1 n)
defined on 8, which are called Resource functions The imterpretation of
these functions 1s that employment of the strategy xS will require the
expenditure of an amount C*(z) of the kth resource

The problem to be solved 1s the maximization of the payoff subject to
given constramts ¢, k=1 =, on each resource, 1e, to find

max..g H(x)

subject to C*(z) ¢, all k

A particular subelass of this general problem with wide application 1s
what will be called a cell problem (or separable problem) mn which there
are a number, m, of independent areas into which the resources may be
committed, and for which the over-all payoff that accrues 1s simply the
sum of the payoffs that accrue from each independent venture (cell)
In this type of problem we have as before, for each cell, a strategy
8., a payoff function H, defined on 8,, and n resource functions C.* defined
on 8, H,(z.) 1s the payoff in the :th cell for employmng strategy t.eS,
and for each k, C.*(z,) 1s the amount of the kth resource expended m the
tth cell by employmng strategy z. in that cell In this case the problem to
be solved 1s to find a strategy set, one element for each cell, which maxi-
mizes the total payoff subject to constramts ¢* on the total resources ex-
pended, 1 e,

max Z H,(z,)

all choices of {z,}
zy€8s

subject to S eXa) = forallk

This type of problem 1s simply a subclass of the previous general prob-
lem since 1t can be translated to the previous problem by the following
1dentifications

s=]Ii=" s. (direct product set),
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[where a strategy xe$ consists of an ordered m-tuple (x;, ,t.) of strate-
gies, one for each 8]

H(z) =27 Hi(z.),
C*(z) =2 CF(zx), allk

MAIN THEOREM AND SOME OF ITS IMPLICATIONS

WE Now present the main theorem concerning the use of Lagrange mul-
tipliers, and discuss 1ts meaning and 1mpheations  The proof will be sup-
plhed 1 a later section
THEOREM 1
1 N, k=1, n are nonnegatwe real numbes s,
2 z*e8 maxzimazes the function

H(x)— D 5=F N C*(2) over all 268,
-3 2% mazvmizes H(x) over all those €8 such that C* < C*(*) for all }

Discussion

This theorem says, for any choice of nonnegative \*, k=1, n, that 1f an
unconstiarned maximum of the new (Lagrangian) function

H(x) =D = A (" (x)

can be found (were z*, say, 1s a strategy which produces the maximum),
then this solution 1s a solution to that constrained maximization problem
whose constraints are, mn fact, the amount of each resource expended 1n
achieving the unconstramed solution Thus if z* produced the uncon-
stramed maximum, and required resources C*(r*), then 2* itself produces
the greatest payoff which can be achieved without using more of any re-
source than z* does
According to Theorem 1, one can simply choose an arbitrary set of non-

negative \’s, find an unconstrained maximum of the modified function,
H(z) — k=t A* C*(x), and one has as a result a solution to a constrained
problem Notice, however, that the particular constrained problem which
18 solved 1s not known 1n advance, but arises i the course of solution and
18, n fact, the problem whose constraints equal the resources expended by
the strategy that solved the unconstramed problem

In general, different choices of the \*’s lead to dafferent resource levels,
and 1t may be necessary to adjust them by trial and error to achieve any
given set of constramts stated mn advance

However, 1t 1s noteworthy that m most operations-research work one
18 not simply mnterested in achieving the optimum payoff for some given
resource levels, but rather m exploring the entire range of what can be
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obtamed as a function of the resource commitments In this case 1t matters
Iittle whether this function 1s produced by solving a spectrum of problems
with constramnts stated i advance, or by sumply sweepmng through the
A¥’s to solve a spectrum of problems whose constraint levels are produced
m the course of solution The method when applicable 1s therefore quite
efficient if the whole spectrum of constraints 1s to be mvestigated Even
n the case where only a single constrant set 1s of interest the use of this
method, and adjustment of the \*’s until the constramnt set 1s achieved,
18 often more efficient than alternative procedures

A DImutation of the Lagrange multipher method arses from the fact
that 1t does not guarantee that an answer can be found m every case
It simply asserts that if an answer can be found 1t will ndeed be optimum

In cases where multiple constraints are involved that are not completely
mdependent 1t may not be possible to simultaneously utihze all resources
to the full allowance of the constramts This can happen if the utiliza-
tion of one resource requires the utilization of others, or equivalently mn
cases where some constramts may mvolve various combinations of others
These cases are analogous to problems m linear programming where cer-
tamn constraints prove to be wrrelevant i the optimum solution

In such cases one might actually find the optimum solution but be un-
able to establish the optimality of the result because of mncompletely util-
1zed resources Nevertheless, there 1s a large class of allocation problems
m which the constramnts really are independent (1e, the resources can be
consumed independently i the region of mterest) In such cases solu-
tions can usually be obtamed that give consumption values adequately
close to the constramnt values The existence of optimum solutions that
can be found by this method actually depends upon an approximate
concavity requirement m the region of the solution that will be discussed
more carefully later

At this point we wish to remind the reader of the generality of Theorem
1 There are no restrictions whatever on the nature of the strategy set S,
nor on the functions H and C* other than real-valuedness The strategy
set may therefore be a discrete finite set, or an nfinite set of any cardmnal-
ity  Furthermore, the payoff function and the resource functions can
take on negative as well as positive values  [C*(z) negative may be inter-
preted as production rather than expenditure of the kth resource ]

Application to Cell Problem

One of the most mmportant appheations of Theorem 1 18 1n the solu-
tion of cell problems As shown in the Formulation Section, these problems
are a subclass of the general problem to which Theorem 1 1s apphcable
In this case, maximizing the unconstramed Lagrangian function

H(z)— 2 07 A C*(x)



Generalised Lagrange Multiplier Method 403

15 equivalent to finding
maXear=p 5,220 Hu(z)] — 20 M3 €K,

t=-1

which (interchanging summation order) 1s the same as
maXgep:—m S Z::T [H!(xt) - k='l )‘ C (xl)]

]

But, since the choices z, may be made mdependently mn each cell as a
consequence of $=]]i="' 8., the sum 1s obviously maximized by simply

maximizing
H.(z.)— 28 MKz,

wn each cell independently of strategy choices in other cells, and summing the
payoffs and resources expended for each cell (for the strategy that maxi-
mized the Lagrangian for that cell) to get the total payoff and resource
expenditures Theorem 1 then assures us that the result of this process
1s a solution to the over-all constrained problem with constraints equal to
the total resources expended by the strategy produced by this procedure

Observe that there 1s no possibility that just a local maximum to the
over-all problem has been obtamed If the Lagrangian m each cell has
been correctly maximized (1e, 1s not itself merely locally maximized),
then theorem 1 guarantees that the result 1s a global maximum to the over-
all problem

Theorem 1 says nothing about the manner m which one obtams the
maxima of the unconstramned Lagrangian functions, but simply asserts
that if one can find them, then one can also have maxima of a problem
with constraints The Lagrange multipliers therefore are not a way m
themselves of finding maxima, but a technique for converting optimization
problems with constrained resources mto unconstramned maximization
problems

This conversion 1s especially crucial for cell problems with constraints
on total resource expenditures, where the conversion to unconstramed
maximmization of the Lagrangian function uncouples what was an essen-
tially combmatorial problem (because of the mmteraction of choices m each
cell through total resource constraints) mto a vastly simpler problem
mvolving mdependent, strategy selections in each cell

The present treatment of Lagrange multiphers was motivated, n faet,
by a cell problem mvolving eontinuous, differentiable payoff functions, the
solution of which was attempted by a classical Lagrange multipher ap-
proach In this case, the resulting (transcendental) equations had m
many circumstances a multipheity of solutions, and the embarrassing
problem arose as to which of several solutions to select for each cell It
appeared as though 1t might be necessary to try all combinations of choices
of solutions—an 1mpossible task 1 this case which involved several hun-
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dred cells As a result of this difficulty, a closer look was taken at the
role of Lagrange multipliers, and the present treatment 1s the result
The origmal problem of multiple solutions 1s, of course, easiy solved by
simply selecting that solution 1 each cell which gives the laigest value
for the Lagrangian

It 1s the recognition that the objective 1s to maximize the Lagiangian,
by whatever means, not to zero 1its derivative, which 1s decisive In
many cases It zs expeditious to maximize the Lagrangian by finding zeroes
of 1ts derivative  One can then easily select a final value by testing each
solution (if there 1s more than one) to find which gives the largest (global)
maximum This procedure automatically excludes any solutions that
correspond to mimma or saddle values, and also facilitates taking into
account any boundary conditions (such as nonnegative resource con-
stramnts) by testing the boundary cases as well t

In other cases (particularly cases of nonnumerical strategies, or dis-
crete strategy sets such as integers), the Lagrangian may best be maxi-
mized by trial and error procedures, or even direct computer scanning of
all possibilities

Another possibility 1s 1llustrated by cases wherein resources may be
applied only 1 integral numbers Often 1n such cases one can define a
continuous differentiable payoff function that attains its correct value on
the mntegers A useful trick applicable to many such cases 1s to maximize
analytically the Lagrangian based upon the continuous function, and then
test the mteger on each side of the solution, selecting the one that maxi-
mizes the Lagrangian

PROOF OF MAIN THEOREM

TuE PROOF of the main theorem presented and discussed in the previous
section 1s quite elementary and direct

Proof of Mawn Theorem By assumptions (1) and (2) of Theorem 1,
M k=1 n, are nonnegative real numbers, and £¥eS maximizes

H(z) =22 N O (=)

over all ze$ (the 2* producing the maximum may very well not be unique—
all that we require 1s that z* be some element that maximizes the La-
grangian) This means that, for all xS,

H(z*) =252t M C(a™) 2 H () — i N CF (),

t This type of constraint (e g , nonnegativity of resources), which holds inde
pendently for each cell rather than over-all as with total resources, 1s handled by
simply restricting the strategy set for the cell appropriately The Lagrange mul-
tipliers are reserved for over-all constraints
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and hence, that

H(2®) 2 H(2) +2571 NC(2™) = CH(x)]
for all ze8 But if the latter inequality is true for all xS, 1t 15 necessarily
true for any subset of S, and hence true on that subset $* of § for

which the resources never exceed the resources C*(2%) Notationally
zes*e for all k, C*(z) gC"(x*) However, on the subset 8* the term

i NCH (M) =01 ()]
15 nonnegative by definition of the subset and the nonnegativity of the

A’s, hence our mequality reduces to H (x*) = H(x) for all res*, and the
theorem 1s proved

LAMBDA THEOREM

THEOREM 2

1 Let {NL,{A k=1 n be two sets of \'s that produce solutions
1,* and 2,%, respectwvely  Fuithermore, assume that the resowrce erpenditures
of these two solutions differ an only the jth resource

C* () = C* (2,") for k#;

and that C°(2,*) > C7(25")

2 Then NZ[H(x,")—H(r.%))/[C(x*) —C'(x:") |2\

This theorem states that, given two optimum solutions produced by
Lagrange multiplers for which only one resource expenditure differs, the
ratio of the change m optimum payoff to the change in that resource ex-
penditure 18 bounded between the two multiphers that correspond to the
changed resource

Thus the Lagrange multipliers, which were mtroduced i order to
constrain the resource expenditures, m fact give some mformation con-
cerning the effect of relaxing the constramnts

In particular, if the set of solutions produced by Lagrange multipliers
results m an optimum payoff that 1s a differentiable function of the re-
sources expended at some point, then 1t follows from Theorem 2 that the
As at this powmnt are m fact the partial derivatives (or total derivative
case of one resource) of the optimum payoff with respect to each resource

(all other resources kept constant)
[aH*/aCJ] Ck constant — )\J
k)
Progf The proof of Theorem 2 1s also quite elementary By hy-

pothesis ;" 1s the solution produced by {A*}, hence z,* maximizes the
Lagrangian for {\;"}, which implies

H(z,*) 2 H(z) +N[C7(2,%) — C7(2) |42 ises MIC* (1) — C¥(2)]
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holds for all zeS, and hence m particular holds for z,* But smnce by hy-
pothesis C*(z,*) = C*(z,*) for k#J, we can deduce that

H(z*) 2 H(z:") + M0 (2,%) — C(2")],
which, since by hypothesis C’ (2,*) > C(2.%), 1mplies that
[H (2:*) — H(2:%)1/[C(2:*) — C*(22™) |2 N,

which proves one side of the conclusion of Theorem 2 Interchanging the
roles of z,* and z,* [and observing the reversal of the sign of
C'(21") —C(z2")]

produces the other side of the mequality to complete the proof of Theorem
2

An obvious consequence of Theorem 2 1s the fact that, if all but one
resource level 1s held constant, the resource that changes 1s a monotone
decreasing function of its associated multipher This fact indicates the
direction to make changes when employing a trial and error method of
adjusting the multiphers 1 order to achieve some given constraints on
the resources

The Lambda Theorem also suggests a potentially useful technique for
choosing a starting set of multipliers for such a trial-and-error method of
achieving given constramt levels i a cell problem Begmning with any
reasonably good allocation of the given resources, one can often calculate
easily what the effect on the payoff 1s for a small additional merement of
each resource, optimally placed within the cells The differential payoff
divided by the mecrement of resource 1s then taken as the starting M for
that resource The \’s are then adjusted by trial and error until the
Lagrange solution corresponds to the given constramnts, producing the
optimum allocation

THE EPSILON THEOREM

A NATURAL question with respect to the practical apphecation of the
Lagrange method concerns 1its stability—supposing that as a result of
methods of calculation or approximation one cannot precisely maximize
the Lagrangian, but can only guarantee to achieve a value close to the
maximum Such a solution can very well be at a drastically different
resource level and payoff than that which actually achieves the maximum,
and yet produce a value of the Lagrangian very near to the maximum
For the method to be practical, 1t 1s required that n this situation a solu-
tion that nearly maximizes the Lagrangian must be a solution that also
nearly maximizes the payoff for the resource levels that ¢ tself produces
(which may be quite different than those of the solution that actually
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maximizes the Lagrangian) Only in such a circumstance would 1t be
safe to assert that the solutions produced by any nonexact proeedures
(such as numerical computation with finite accuracy, or methods based
upon approximations) were mn fact approximately optimal solutions to the
constrained problem Such required assurance of nsensitivity 1s supphed
by the following (‘epsilon’) theorem

THEOREM 3

1 & comes within e of marvmizing the Lagrangqian, 1 e, for all xe$

H(&) —Y_ NCH(E) > H(z) —3_ \'C*(x) —e
=2 £ 18 a solution of the constrained problem unth constraints ¢*=C* (%)
that 1s wself wsthin e of the maxymum for those constraints
The proof of this theorem, which 1s a simple extension of Theorem 1,
exactly parallels the proof of Theorem 1 (with an added ¢) and will not
be repeated

ADDITIONAL REMARKS, CONCLUSIONS, AND COMPUTATIONAL
PLOYS

Gaps or Inaccessible Regions

Theorem 1 assures us that any maximum of the Lagrangian necessarly
18 a solution of the constrained maximum problem for constraints equal to
the resource levels expended 1in maximizing the Lagrangian

The Lagrange multipher method therefore generates a mapping of the
space of lambda vectors (components \*, k=1, ,=n) mto the space of
constramnt vectors (components ¢, k=1 n) There 1s no a priorl
guarantee, however, that this mapping 1s onto—for a given problem there
may be maceessible regions (called gaps) consisting of constraint vectors
that are not generated by any A vectors Optimum payoffs for constramts
mside such maccessible regions can therefore not be discovered by straight-
forward appheation of the Lagrange multiplier method, and must hence
be sought by other means

The basic cause of an maccessible region 1s nonconcavity 1n the function
of optimum payoff vs resource constramnts (convexities mn the envelope
of the set of achievable payoff pomnts in the space of payoff vs constraint
levels) This possibility, and several methods for dealing with 1t, will now
be mvestigated

Before begmning this mmvestigation, however, we wish to pomt out that
even though the Lagrange multipher method 1s not certain to obtan the
desired solutions 1 all cases, any solutions that 1t does yield are guar-
anteed by Theorem 1 to be true solutions The procedure 1s therefore
‘fail-safe,’ a very reassuring property It has been our experience over
the last several years, which mcludes apphication of this method to a variety
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of production and military allocation problems, that the method has been
extremely successful, and nearly always has directly yielded all solutions
of interest The few situations in which the direct method failed were
readily solved by simple modifications to the procedure, some of which
will now be mentioned

Source of Gaps

Consider the (n+1) dimensional space of payoff vs resource expendi-
tures This space will be called PR space for brevity Every strategy
re$ maps nto a point m this space correspondmg to H(r),C*(2) (h=1 n)
The entire problem 1s therefore repiesented by this set of accessible ponts
m PR space  The problem of finding the maximum of H subject to con-
stramts ¢*, k=1 n, 1s sumply the problem of selecting that pomt of our
set 1n PR space of maximum H that 1s contained m the subspace of PR
space where the resources are bounded by the ¢’s  The set of all such
pomts (corresponding to all sets of values m the c¢*’s) will be called the
envelope, and constitutes the entire set of solutions for all possible con-
straint levels

Consider now any solution r* produced by a set of Lagrange mults-
plers (\*) By definition 2* maximizes the Lagrangian, consequently
we have that

HQM =AM ™) 2 H(x) =20 2 CH )
for all zeS Rearranging terms slightly, we have

H() SH() 2 W ™) 420 M O (x)
for all 2¢8 If we consider now the hyperplane in PR space defined by
H=Y_ N C*+a where a=H(2*) —>_ N (*(«*), we see that, because of
the previous mequality, none of the accessible points in PR space hes
above this hyperplane, and at least one pomnt, H(x*),C*(x*) k=1 n,
lies on 1t

Each solution produced by Lagrange multiphiers therefore defines a
bounding hyperplane that 1s tangent to the set of accessible pomts m PR
space at the pomt corresponding to the solution (hence tangent to the
envelope), and which constitutes an upper bound to the entire set of ac-
cessible points It 1s clear that, smce no such tangent bounding hyper-
planes exist 1n regions where the envelope of accessible points in PR space
1s not concave, the Lagrange multiplier method eannot produce solutions
m such a region Conversely, for any pomt on the envelope (solution)
where a tangent bounding hyperplane does exist (envelope concave at
the point), 1t 18 obvious that there exists a set of multipliers (namely the
slopes of the hyperplane) for which the strategy corresponding to the point
1n question maximizes the Lagrangian
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Thus the Lagrange method will succeed m producing all solutions that
correspond to concave regions of the envelope (optimized payoff vs con-
stramt level), and fail in all nonconcave regions

A fortunate feature of cell problems with many cells 1s the fact that,
even though there may be large convexities 1 the envelope m the PR
space for each cell, the result of over-all optimization 1s an envelope mn the
PR space for the total problem 1n which the convexities are vastly reduced
n significance T This property 1s the major reason for the general success
of the Lagrange method 1n solving cell problems

Some Methods for Handling Gaps

Despite the general success of Lagrange multiphers (at least for the
problems we have encountered), occasions may arise where gaps occur in
regions of critical mterest Under such circumstances there are several
useful techniques that can be attempted before abandoning the procedure
altogether

First, all solutions that can be obtamed outside the gaps contribute a
good deal of information and can be used to bound the solution in the gap
region  As was previously shown, each solution that can be obtained by
Lagrange multipliers defines a boundmg hyperplane that gives an upper
bound to the maximum payoff at all points, and hence mnside the gap as
well For any pomt mside a gap, therefore, an upper bound can be ob-
tamed by finding the mmimum payoff for that pomt over the set of bound-
ing hyperplanes corresponding to the solutions that one could calculate

On the other hand, every solution that can be obtamed that has the
property that none of its resource expenditures exceeds the resources of a
pomnt 1 a gap for which one 1s seeking bounds, obviously constitutes a
lower bound to the optimum payoff at the pont in question, and the maxi-
mum of these lower bounds can be selected as a lower bound to the payoff
m question Thus the set of solutions that can be obtamed by Lagrange
multipliers can be used to obtain bounds on the optimum payoff for mac-
cessible regions

There 1s another technique that 1s often successful in reducing gaps m
mstances where the bounds one can compute leave too large a region of
uncertainty, and where the gap 1s caused by degeneracy m which a number
of cells have gaps corresponding to the same multipher A gap 1s char-

t In fact, the gap structure for the over-all problem obviously simply reflects
farthfully the gap structure in the individual cells, with each gap 1n a cell correspond-
ing to a given multiplier value occurring with the same magnitude (same jump 1n
payoff and resources) 1n the over-all optimization at precisely the same multiplier
value Only degeneracies 1n which several cells have gaps corresponding to the
same multiphier can cause a larger gap 1n the over-all problem, and such degeneracy
18 easily removed by techniques to be discussed 1n the following section
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acterized by the behavior that, as the A’s are continuously varied, there
are abrupt discontinuities m the resource levels generated These dis-
continuities can often be filled 1n cell problems by the fellowing technique

Given two sets of \’s,(A"),(As"), which are very close, but for which
the generated resource levels markedly differ, one can make a muxed cal-
culation m a cell problem using the set (") 1 some cells and the set
(As*) 1 the others If the two sets of A’s are close together, maximizing
the Lagrangian in any cell for one set will necessarily result mn a solution
that nearly maximizes the Lagrangian for the other set, hence by the
Epsilon Theorem will yield a result that 1s guaranteed to be nearly optimum

Somewhat more generally, one can simply exploit the Epsilon Theorem
directly m a cell problem, working with a given set of A’s but deliberately
modifying the cholces m some or all cells m a way which moves m the
direction of the desired expenditure of resources By summing the devia-
tions from maximum of the Lagrangian m each cell (epsilons) m which
the strategies are so modified, a bound on the error of the result 1s obtamed
(which can be kept quite small 1n most cases by judicious choice of devia-
tions). This appears to be a quite powerful strategem

Generalization of Lagrange Method

We conclude by mentioning a generalization of the Lagrange method
that could prove useful for some problems Instead of a Lagrangian of
the form H(z) —y_ A* C*(z), one can use a more general form

H(z) -GIC'(z), ,C™(x)\, ,\"]
where (7 1s any function satisfying
CF G (all k)-GO INH = GL{CY,{A%]

for all {\*}, but 1s otherwise completely arbitrary Thus the only require-
ment on G 1s that 1t be monotone on the directed set of constramnt vectors
partially ordered by wmclusion (one constramnt vector includes a second if
no component of the second exceeds the corresponding component of the
first)

It 1s easily venfied that the proof of Theorem 1 carries over to supply
a proof for this general form of Lagrangian, and we can therefore conclude
that an unconstramned maximum of a Lagrangian of this form 1s 1n fact a
solution to the problem of optimizing the payoff subject to those constrants
that are the resources expended by this solution.

This more general formulation 1s somewhat more powerful than the
standard form for some classes of problems, since the solutions that can
be found by 1t are no longer restricted to concave pownts i the PR space
envelope It 1s, however, of Iittle use m the solution of cell problems,
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where the decisive decouphng of the problem mto mdependent choices
m each cell depends upon the hnear form of the Lagrangian

EXAMPLE

AN INSTRUCTIVE example that illustrates a number of the pomts heretofore
described 1s the appheation of Lagrange multiplier techniques to a problem
of least-cost allocation of rehability mmvestment presented previously n
OreraTIONs REsEARcH" by Joun D KETTELLE, JR , and solved there by
a dynamie programming algorithm

The problem 1s to optimize the redundancy of an m-stage system,
each stage of which consists of a number 7, of parallel (redundant) com-
ponents of cost ¢, and reliability (availability) a. The separate stages
are taken to be m series, so that the system 1s operable if, and only i,
every stage contamns at least one operable component The allocation
problem 1s then to choose the stage redundancies (n,’s) 1n such a manner
as to minimize the cost of achieving some stated system rehability (or
alternately, to maximize the system reliability subject to constrained
total cost)

The system reliability 1s given by

A=t 1-(1—a)™)

Since maximizing the logarithm of a function maximizes the function, we
take our payoff to be the log of the rehabihity

H=InA=) 7 In[l1-(1—a)™],

and we have the problem formulated as a standard cell problem of the
type previously discussed

In accord with the generahzed Lagrange multipher technique presented
earlier, m order to produce an optimum solution for a given A=0 we have

only to maximize, mdependently for each stage (cell), the quantity
H/(n)=h[l—(1—a)™]—A¢.n,

over the integers n,=1 The allocation so produced 1s then guaranteed by
the maimn theorem to be optimum for 1ts cost

Since the functions H, (n.) are concave, they can be maximized by
determming first analytically (by differentiation) which real value of n,
maximizes, then testing the integer on each side to find which wnteger
maximizes Thus

dH. /dn,= —(1—a,)"In(1—a,) /[1— (1—a,) ™]—Ae,=0
leads to the solution (real) for n,
n,=In{1/[1—-In(1—a,)/Ac.}}/In(1—a,)
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This formula 1s then applied to each stage, the nearest integers (not
less than one), [n.] and [n.+1], are tested to determine which maximizes
H.(n,), and the payoffs and costs summed to produce an optimum solu-
tion

The entire procedure 1s repeated for a series of values of A to produce
a series of optimum solutions

Notice that this procedure leads to a direct calculation of the optimum
number of components mn each stage (for a given A), which 1s independent
of the actual numerical values and of the number of stages The amount
of computation mvolved m producing a solution for a given X\ 1s thus
linear with the number of stages—a considerable advantage over other
methods for large-scale problems mvolving many stages (As a test case,

TABLE 1
Stage Cost Rehability
1 I2 o038
2 23 o7
3 34 ©75
4 45 o 85

an artificial example of 10,000 stages, with randomly chosen component
rehabilities and costs, was programmed for the CDC-1604 computer,
leading to a computation time of about 40 seconds to produce the solution
for each \ )

As previously mentioned, the advantages of the Lagrange multipher
method are most pronounced for large-scale cell problems, m which the
mmportance of gaps 1s smallest, and mn which 1t 15 most 1mportant that
computation time be linear with the number of cells Consequently any
small-scale numerical examples chosen cannot properly convey the value
of the method, since for very small problems other methods are more
competitive and the gaps between solutions produced by the Lagrange
method can have much greater significance

With this observation mn mind, 1t 1s nevertheless mstructive to llustrate
the concepts by studying n detail the structure of a small-scale numerical
example To this end we shall treat the same numerical example treated
m reference 1, which 1s a four-stage rehability allocation problem with
component costs and reliabilities given by Table I

Application of the Lagrange multiplier method as previously developed
for this problem for a series of values of A produces the solutions shown m
Table 11

Inspection of these results shows that m all but one case the changes
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1 allocation from one solution to the next consist of at most one additional

component n at most one stage

It 1s therefore clear in this case, where

payoff and cost are monotone with number of components, that there are
no A values which could produce new solutions between these solutions

TABLE II
Allocation
A Cost System unrehability
Stage 1 | Stage 2 | Stage 3 | Stage 4

© 0009 44 6 © 009997 5 5 4 3
o 0008 48 o o 007086 5 5 5 3
0 0007 503 © 005392 5 6 5 3
o 0006 54 8 0 002530 5 6 5 4
0 000§ 54 8 © 002530 5 6 5 4
o 0004 54 8 0 002530 5 6 5 4
0 0003 54 8 © 002530 5 6 5 4
o 0002 61 7 0O 001033 6 7 6 4

However, the transition from A=0 0003 to 0 0002 produced a change mn
three stages, and we can expect further solutions in this mnterval for mter-
Additional exploration of this region mdeed yields two
new solutlons, as given 1 Table III

mediate A values

TABLE III
Allocation
X\ Cost System unrehabihty
Stage 1 | Stage 2 | Stage 3 | Stage 4

0 000225 54 8 0 002530 5 6 5 4
0 000220 57 1 © 002020 5 7 5 4
0 000215 60 3 o 001288 5 7 6 4
0 000210 61 7 0 001033 6 7 6 4

Since there are no longer any changes by more than one component
between successive solutions, the hist of solutions that can be produced by
Lagrange multipliers 1s complete for this range of cost (reasonably effi-
cient procedures for automatic selection of successive N values to produce
all solutions that can be produced by this method are obviously easy to

construct)

Let us now examine the complete structure of the problem to deter-
mine any solutions we may have overlooked, and what might be done to

produce them
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Figure 1 depicts a portion of the PR space for this problem An
allocation 18 represented as a dot whose abscissa 1s the total cost of that
allocation, and whose ordinate 1s the system rehabihty (payoff) produced
by that allocation Every possible allocation that falls in the range of
Fig 1 1s represented in Fig 1  The pomts enclosed by squares are those
optimum solutions produced by the Lagrange multipher method (those
that lie on the convex hull of the pomnt set), and the circled points are the
remamning optimum solutions. The sohd stepped line jomning both types
of points 1s the complete optimum rehability vs mvestable cost function

The density of 1its solutions even n this small-scale problem 1s quite
adequate for many applications, particularly preliminary explorative
studies (It succeeded, m fact, i producing the particular solution sought
i the original presentation of this example by Kettelle )

As mentioned earher, the epsilon theorem can often be exploited to
produce additional nearly optmmal solutions by deliberately deviating
shightly from maximizing the Lagrangian m each cell, and keepmng track
of the sum of the deviations (epsilon) An even more powerful strategem,
which we shall employ now, 1s based upon generating these deviations in
order of mncreasing epsilon In a discrete problem such as this, one can,
within each cell, order the strategies m order of increasing deviation of the
value of the Lagrangian from 1ts maximum value One can furthermore
construct simple algorithms to select, based on these ordered deviations
withm the cells, the sequence of combinations of deviations among the
cells with the property that each successive combination has the smallest
total deviation from the Lagrange solution excluding the preceding com-
bmations Such a sequence has the property that every member, which
18 not dominated by a preceding member (1n the sense of more payoff for
equal or less cost), 1s itself an optimum solution, since 1t maximizes the
over-all Lagrangian when the previous members of the sequence are re-
moved

Appheation of this technique to the present problem produces the
additional solutions shown mn Table IV

In addition to the new solutions, Table IV gives the value of A which
produced that solution, and how far in the ordered sequence of deviations
(e-Depth) the solution was produced Note that all solutions m the range
studied (including one, at a cost of 46 9, not reported by Kettelle) have
been produced by examining at most the first six deviations from each of
the solutions produced by the mitial set of A values

While generation of the ordered sequence of deviations becomes more
difficult (time consuming) the farther one progresses, 1t 18 quite fast for
the first members One might expect that for many applications the
density of solutions would be adequately mcreased by extending such
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calculations only to the first several deviations when the basic Lagrange
solutions were deemed of msufficient density

A general advantage of the techniques heremn desertbed lies mn the fact
that they allow one to approach a problem first with a simple technique
(the basic Lagrange multiplier method) and then to produce additional
solutions only when actually desirable or necessary (either by using a
finer mesh of \’s, or if that fails by employing gap filling techniques), 1n
contrast to techniques like dynamic programmmng that are ‘all or nothing,’
and by their nature produce a complete solution

TABLE 1V
Svste Allocation
ystem
Cost unrehability A eDepth
Stage 1 | Stage 2 | Stage 3 | Stage 4
45 7 © 009579 4 6 4 3 o 0009 6
46 8 © 008357 4 5 5 3 0 0009 3
46 ¢ o 008309 5 6 4 3 0 0009 4
49 1 o 006666 4 6 5 3 o 0007 4
515 o 005138 6 6 5 3 o 0006 6
52 3 0 004227 5 5 5 4 o 0006 2
53 6 o 003807 4 6 5 4 0 0006 5
56 o © 002274 6 6 5 4 0 0004 I
58 2 o 001798 5 6 6 4 0 0004 3
58 3 o 001765 6 7 5 4 o 0002 3
59 4 0 001543 6 6 6 4 0 0002 2
SUMMARY

THE LAGRANGE multipher method of solving constramed maximum prob-
lems has considerably greater power than is generally realized It 1s not
limited to differentiable functions, but may often be profitably applied
In situations volving maximization of any type of function over any set
of strategies, discrete or continuous, numerical or nonnumerical, with
constramts that can be represented as bounds on real valued functions
over the same strategy set

The method 1s especially useful for solving problems of optimal alloca-
tion of a number of resources to a number of independent ventures where
the total payoff 1s the sum of the payoffs that accrue from each venture
(cell problem) In such a cell problem the Lagrange method reduces the
problem to a series of mdependent unconstramned maximization problems,
one for each cell

One example of such a problem that often anses in military operations
research 1s the optimum allocation of given stocks of several weapons
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types of differng characteristics to a diverse set of mdependent targets
For such problems 1t 1s often crucial to account for the fact that weapons
can be delivered only mn integral numbers We have heard of at least
one case where this problem has been attacked by nonlinear mteger pro-
gramming

The solution of this problem 1s, of course, quite simple and straight-
forward with the present techmique of Lagrange multiphers In this
case, the cells are the individual targets A strategy for a cell 15 an n-
tuple of integers, one for each weapon type, representing the number of
that type of weapon to allocate to the target The payoff mn a cell 1s the
expected destruction to the target of the given weapon allocation, and the
resource functions are simply the numbers of weapons allocated them-
selves

The technique 18 not m general certamn to produce solutions for all
mteresting constramt levels It 1s, however, ‘fail-safe’ in the sense that
any solution that 1t does produce 1s a true optimum  Furthermore, there
are a number of additional techniques that often succeed 1n regions where
the basic method fails

The Lagrange multipher techniques presented here are particularly
well suited to use with computers, where the sweeping (or tral-and-error
variation) of the multiplers, as well as the maximizations within the mn-
dividual cells of a cell problem, can be progitammed to be rapidly and
automatically executed

As was previously mentioned, the method has been employed m WSEG
for several years for solving both production and military allocation prob-
lems, and has been quite successful

As a final note, the reader 1s cautioned aganst mmdiscrimmately apply-
ng this method to min-max problems (where there are two sides allocating
resources—an attacker and a defender, for example—with opposing mn-
terests) It 15 tempting m such cases to mtroduce multiplers for both
sides and then carry out a min-max operation on the resulting Lagrangian,
the analogy of the pure maximzation case However, there 1s no analogue
of Theorem 1 1n the min-max case, and the procedure 1s not ‘fail-safe,” but
can and does 1n many instances produce erroneous results

Methods of handling the nmun-max case will be the subject of another

paper
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